研究生: |
陳文豪 Chen, Wen-Hao |
---|---|
論文名稱: |
Robust Filter and Control Design for Stochastic Partial Differential Systems with Poisson Noise 含有波松雜訊的隨機偏微分系統的強健濾波器及控制的設計 |
指導教授: |
陳博現
Chen, Bor-Sen |
口試委員: |
陳博現
張正尚 張翔 王文俊 李柏坤 曾仲熙 |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 110 |
中文關鍵詞: | 模糊方法 、強健H_infinity濾波器 、強健H_infinity控制器 、線性矩陣不等式 、非線性隨機偏微分系統 、時空領域 |
外文關鍵詞: | fuzzy approach, robust H_infinity filter, robust H_infinity controller, LMI, nonlinear stochastic partial differential system, spatio-temporal domain |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
This study addresses the robust H_infinity filter and control design problems for nonlinear stochastic partial differential systems (NSPDSs) with Poisson noise under the environment of random external disturbance and measurement noise in the spatio-temporal domain. For NSPDSs, the robust H_infinity filter and control designs via a set of sensor measurements need to solve a complex Hamilton Jacobi integral inequality (HJII) for robust estimation and control despite random external disturbance and measurement noise. In general, it is very difficult to solve the nonlinear partial differential HJII. In order to simplify the design procedure, a fuzzy stochastic partial differential system is proposed to approximate the NSPDS based on fuzzy interpolation approach. Then a fuzzy stochastic spatial state space model is developed to represent the fuzzy stochastic partial differential system via the semi-discretization finite difference scheme and the Kronecker product. Based on this model both robust H_infinity filter and control designs are proposed to achieve the robust estimation and control via solving linear matrix inequalities (LMIs) instead of an HJII. The proposed robust fuzzy H_infinity filter and controller have an efficient ability to attenuate the effect of spatio-temporal external disturbance and measurement noise on the estimation and control of NSPDSs from the area energy point of view. Finally, some robust H_infinity estimation and control examples are given for the illustration of design procedure and the performance confirmation of the proposed robust filter and controller design methods.
本篇研究乃是針對一些含有波松雜訊(Poisson noise)的非線性隨機偏微分系統,處在時空領域上的任意外界擾動和測量雜訊的環境下,提出一個強健 濾波器及控制的設計問題。對於非線性隨機偏微分系統而言,經由一組感測器來設計濾波器及控制,必須求解一個無論在任意外界擾動和測量雜訊下,能夠達到強健估測及控制之相關的複雜漢彌爾頓-傑克比積分不等式(Hamilton Jacobi integral inequality)。一般而言,是很難以求得這種非線性偏微分漢彌爾頓-傑克比積分不等式的解。因此,為了要簡化設計程序起見,一個根基於模糊內插方法的模糊隨機偏微分系統是被提出來近似非線性隨機偏微分系統。然後,藉著採用半離散化的有限差分法和克羅內克乘積(Kronecker product),一個模糊隨機空間上的狀態空間模型就被發展出來以表示模糊隨機偏微分系統。基於這個空間上的狀態空間模型,藉由求解線性矩陣不等式以取代求解漢彌爾頓-傑克比積分不等式,一個強健 濾波器及控制的設計是被提出來,以獲得強健估測及控制。從區域能量的觀點來看,這個被提出的強健H_infinity濾波器及控制器能有效率地減少時空領域上的外界擾動和測量雜訊對於非線性隨機偏微分系統的估測及控制上的影響。最後,給予一些強健H_infinity估測及控制的例子,來說明設計的步驟並且肯定這個所提出的強健濾波器及控制器的設計之效能。
[1] S. K. Nguang and W. Assawinchaichote, "H_infinity Filtering for Fuzzy Dynamical Systems with Pole Placement Constraints," IEEE Trans. Circuits Syst. I, pp. 1503-1508, 2003.
[2] W. Assawinchaichote and S. K. Nguang, "H_infinity Filtering for Nonlinear Singularly Perturbed Systems with Pole Placement Constraints: An LMI Approach," IEEE Trans. Signal Process., pp. 1659-1667, 2004.
[3] H. Du, L. Xie and Y. C. Soh, “H_infinity Reduced-Order Approximation of 2-D Digital Filters,” IEEE Trans. Circuits Syst. I, vol. 48, pp. 688-698, 2001.
[4] Z. Tan, Y. C. Soh and L. Xie, “Envelope-Constrained H_infinity FIR Filter Design,” IEEE Trans. Circuits Syst. II, vol. 47, pp. 79-82, 2000.
[5] H. Gao, J. Lam, L. Xie and C. Wang, “New approach to mixed H2/H_infinity filtering for polytopic discrete-time systems,” IEEE Trans. Signal Process., vol. 53, pp. 3183 - 3192, 2005.
[6] C. Du, L. Xie and Y. C. Soh, “H_infinity filtering of 2-D discrete systems,” IEEE Trans. Signal Process., vol. 48, pp. 1760 - 1768, 2000.
[7] M. J. Grimble and A. E. Sayed, “Solution of the H_infinity optimal linear filtering problem for discrete-time systems,” IEEE Trans. Acoust., Speech, Signal Process., vol. 38, no. 7, pp. 1092-1104, Jul. 1990.
[8] S. Xu and T. Chen, "An LMI approach to the H_infinity filter design for uncertain systems with distributed delays," IEEE Trans. Circuits Syst. II, vol. 51, pp.195-201, 2004.
[9] H. Shu, T. Chen and B. A. Francis, "Minimax Design of Hybrid Multirate Filter Banks," IEEE Trans. Circuits Syst. II, vol. 44, pp.120-128, 1997.
[10] A. ElSayed, M. J. Grimble and D. Ho, "On H_infinity filtering in multivariable discrete-time systems," in Proc. IEEE Int. Symp. on Circuits and Systems, Helsinki, June 1988, pp. 1573-1576.
[11] M. J. Grimble, "Polynomial Matrix Solution of the H_infinity Filtering Problem and the Relationship to Riccati Equation State-Space Results," IEEE Trans. Signal Process., vol. 41, pp. 67-81, Nov. 1993.
[12] B. S. Chen, W. H. Chen and H. L. Wu, “Robust H2/H_infinity global linearization filter design for nonlinear stochastic systems,” IEEE Trans. Circuits Syst. I, vol. 56, no. 7, pp. 1441-1454, 2009.
[13] B. S. Chen, C. L. Tsai and Y. F. Chen, “Mixed H2/H_infinity filtering design in multirate transmultiplexer systems: LMI approach,” IEEE Trans. Signal Process., vol. 49, pp. 2693-2701, Nov. 2001.
[14] B. S. Chen, C. L. Tsai and D. S. Chen, "Robust H_infinity and Mixed H2/H_infinity filter for equalization design of nonlinear communication systems: Fuzzy interpolation approach," IEEE Trans. Fuzzy Syst., vol. 11, pp. 384-398, 2003.
[15] D. Hinrichsen and A. J. Pritchard, “Stochastic H_infinity,” SIAM J. Control Optim., vol. 36, pp. 1504-1538, 1998.
[16] B. S. Chen and W. Zhang, “Stochastic H2/H_infinity control with state-dependent noise,” IEEE Trans. Automat. Contr., vol. 49, no. 1, pp. 45-57, 2004.
[17] W. Zhang and B. S. Chen, “State feedback H_infinity control for a class of nonlinear stochastic systems,” SIAM J. Control Optim., vol. 44, no. 6, pp. 1973–1991, 2006.
[18] W. Zhang, B. S. Chen and C. S. Tseng, “Robust H_infinity filtering for nonlinear stochastic systems,” IEEE Trans. Signal Process., vol. 53, pp. 589-598, 2005.
[19] C.-S. Tseng, “Robust Fuzzy Filter Design for A Class of Nonlinear Stochastic Systems,” IEEE Trans. Fuzzy Syst., vol. 15, no. 2, pp. 261-274, 2007.
[20] E. Gershon, D. J. N. Limebeer, U. Shaked and I. Yaesh, “Robust H_infinity filtering of stationary continuous-time linear systems with stochastic uncertainties,” IEEE Trans. Automat. Contr., vol. 46, pp. 1788-1793, Nov. 2001.
[21] S. Xu and T. Chen, “Reduced-order H_infinity filtering for stochastic systems,” IEEE Trans. Signal Process., vol. 50, no. 12, pp. 2998-3007, 2002.
[22] A. Isidori, and A. Astolfi, “Disturbance attenuation and H_infinity-control via measurement feedback in nonlinear systems,” IEEE Trans. Automat. Contr., vol. 37, pp. 1283-1293, 1992.
[23] W. M. Lu, and J. C. Doyle, “H_infinity control of nonlinear systems via output feedback: controller parameterization,” IEEE Trans. Automat. Contr., vol. 39, pp. 2517-2521, 1994.
[24] A. J. Van der Schaft, L2-Gain and Passivity Techniques in Nonlinear Control, London: Springer, 2000.
[25] K. Liu, Stability of infinite dimensional stochastic differential equations with applications, Chapman & Hall/CRC, 2006.
[26] P. L. Chow, Stochastic Partial Differential Equations, Chapman & Hall/CRC, 2007.
[27] M. J. Anabtawi and S. Sathananthan, “Stability and convergence results for Ito-type parabolic partial differential equations in Hilbert spaces,” Stoch. Anal. Appl., vol. 27, pp. 671–693, 2009.
[28] Y. Lou, G. Hu, and P. D. Christofides, “Model predictive control of nonlinear stochastic partial differential equations with application to a sputtering process,” Aiche Journal, vol. 54, pp. 2065–2081, 2008.
[29] H. Yoo, “Semi-discretization of stochastic partial differential equations on R1 by a finite-difference method,” Math. Comput., vol. 69, no. 230, pp. 653–666, 1999.
[30] C. I. Byrnes, I. G. Lauk´o, D. S. Gilliam, and V. I. Shubov, “Output regulation for linear distributed parameter systems,” IEEE Trans. Automat. Contr., vol. 45, pp. 2236–2252, 2000.
[31] C. L. Lin and B. S. Chen, “Robust observer-based control of large flexible structures,” J. Dyn. Syst. Meas. Control-Trans. ASME, vol. 116, pp. 713–722, Dec. 1994.
[62] J. Keener and J. Sneyd, Mathematical Physiology. Springer-Verlag, 1998.
[33] H. T. Banks, Modeling and Control in the Biomedical Sciences. Springer-Verlag, 1975.
[34] C. V. Pao, Nonlinear Parabolic and Elliptic Equations. New York :Plenum Press, 1992.
[35] P. L. Chow, “Stochastic partial differential equations in turbulence-related problems,” in Probabilistic Analysis and Related Topics, Vol. I. Academic Press, New York, 1978, pp. 1–43.
[36] D. Dawson, “Stochastic evolution equation,” Math. Bioseciences, vol. 15, pp. 287–316, 1972.
[37] W. Fleming, Distributed Parameter Stochastic Systems in Population Biology, Lecture Notes in Economics and Mathematical Systems. Springer, Berlin, 1975, vol. 107.
[38] C. Koch, Biophysics of Computation: Information Processing in Single Neurons. Oxford University Press, Inc., 1999.
[39] W. H. Ray. Advanced Process Control. New York: McGraw-Hill, 1981.
[40] S. Dubljevic, P. D. Christofides and I. G. Kevrekidis, “Distributed nonlinear control of diffusion-reaction processes,” Int. J. Robust Nonlinear Control, vol. 14, no. 2, pp. 133-156, 2004.
[41] M. J. Balas, “The Galerkin method and feedback control of linear distributed parameter systems,” J. Math. Anal. Appl., vol. 91, no. 2, pp. 527-546, 1983.
[42] M. J. Balas, “Reduced-order feedback control of distributed parameter systems via singular perturbation methods,” J. Math. Anal. Appl., vol. 87, no. 1, pp. 281-294, 1982.
[43] S. Dubljevic and P. D. Christofides, “Predictive control of parabolic PDEs with boundary control actuation,” Comput. Chem. Eng., vol. 61, no. 18, pp. 6239-6248, 2006.
[44] P. D. Christofides, Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport-Reaction Processes. Boston: Birkhauser, 2001.
[45] M. J. Balas, “Feedback control of linear diffusion processes,” Int. J. Control, vol. 29, no. 3, pp. 523-534, 1979.
[46] R. F. Curtain, “Finite-dimensional compensator design for parabolic distributed systems with point sensors and boundary input,” IEEE Trans. Autom. Control, vol. 27, no. 1, pp. 98-104, 1982.
[47] G. Hagen and I. Mezic, “Spillover stabilization in finite-dimensional control and observer design for dissipative evolution equations,” SIAM J. Control Optim., vol. 42, no. 2, pp. 746-768, 2003.
[48] M. J. Balas, “Feedback control of flexible systems,” IEEE Trans. Autom. Control, vol. 23, no. 4, pp. 673-679, 1978.
[49] F. B. Hanson and D. Ryan, "Mean and Quasideterministic Equivalence for Linear Stochastic Dynamics," Mathematical Biosciences, vol. 93, pp. 1-14, Mar 1989.
[50] I. I. Gikhman and A. V. Skorokhod, Stochastic differential equations. Berlin, New York,: Springer-Verlag, 1972.
[51] J. J. Florentin, "Optimal control of systems with generalized Poisson inputs," J. Basic Engr. Tran. ASME, vol. 38, pp. 217–221, 1963.
[51] R. M. AbuSaris and F. B. Hanson, "Computational suboptimal filter for a class of Wiener-Poisson driven stochastic processes," Dynamics and Control, vol. 7, pp. 279-292, Jul 1997.
[53] I. Kolmanovsky and T. Maizenberg, "Optimal containment control for a class of stochastic systems perturbed by Poisson and Wiener processes," IEEE Transactions on Automatic Control, vol. 47, pp. 2041-2046, Dec 2002.
[54] J. J. Westman and F. B. Hanson, "State dependent jump models in optimal control," Proc. Control, pp. 2378–2383, 1997.
[55] S. Kalpakam and K. P. Sapna, "A Control Policy of an Inventory System with Compound Poisson Demand," Stochastic Analysis and Applications, vol. 11, pp. 459-482, 1993.
[56] R. C. Merton, "Option Pricing When Underlying Stock Returns Are Discontinuous," Journal of Financial Economics, vol. 3, pp. 125-144, 1976.
[57] N. C. Framstad, Oksendal B. and Sulem A., "Optimal consumption and portfolio in a jump diffusion market with proportional transaction costs," Journal of Mathematical Economics, vol. 35, pp. 233-257, Apr 2001.
[58] H. C. Tuckwell, "Spike trains in a stochastic Hodgkin-Huxley system," Biosystems, vol. 80, pp. 25-36, Apr 2005.
[59] Y. Y. Chen, Y. T. Chang, and B. S. Chen, “Fuzzy solutions to partial differential equations: Adaptive approach,” IEEE Trans. Fuzzy Syst., vol. 17, no. 1, pp. 116–127, 2009.
[60] L. X. Wang and J. M. Mendel, "Fuzzy Adaptive Filters, with Application to Nonlinear Channel Equalization," IEEE Trans. Fuzzy Syst., vol. 1, pp. 161-170, 1993.
[61] W. Wei and J. M. Mendel, "A fuzzy logic method for modulation classification in nonideal environments," IEEE Trans. Fuzzy Syst., vol. 7, pp. 333-344, 1999.
[62] S. Albeverio, J.L. Wu, and T.S. Zhang, Parabolic SPDEs driven by Poisson white noise, Stoch. Processes Appl. 74 (1998), 21–36.
[63] C. Knoche, "SPDEs in infinite dimension with Poisson noise," Comptes Rendus Mathematique, vol. 339, pp. 647-652 , 2004.
[64] E. Hausenblas, "SPDEs driven by Poisson random measure with non Lipschitz coefficients: existence results," Probab. Theory Related Fields, vol. 137, pp. 161–200, 2007.
[65] S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations with Levy Noise, Cambridge University Press, Cambridge, UK, 2007.
[66] D. Applebaum and J.L. Wu, "Stochastic partial differential equations driven by Levy space-time white noise," Random Operators and Stoch. Equations, vol. 8, pp. 245–261, 2000.
[67] C. Mueller, "The heat equation with Levy noise," Stoch. Processes Appl., vol. 74, 67–82, 1998.
[68] B. Jourdain, S. M´el´eard and W. A. Woyczynski, "Nonlinear SDEs driven by Levy processes and related PDEs," Alea, vol. 4, pp . 1-29, 2008.
[69] A. Lokka, B. Oksendal and F. Proske, "Stochastic partial differential equations driven by Levy space-time white noise," The Annals of Applied Probability, vol. 14, pp. 1506-1528, 2004.
[70] A. Lang, "Mean square convergence of a semidiscrete scheme for SPDEs of Zakai type driven by square integrable martingales," Procedia Computer Science, vol. 1, pp. 1615-1623, 2010.
[71] S. Tappe, "A note on stochastic integrals as L2-curve," Statistics and Probability Lettes, vol. 80, pp. 1141-1145, 2010.
[72] F. Hanson, Applied Stochastic Processes and Control for Jump-Diffusions: Modeling, Analysis and Computation, SIAM Books, Philadelphia, PA, 2007.
[73] M. Grigoriu, Stochastic Calculus. Birkhauser, 2002.
[74] G. Dong, Nonlinear Partial Differential Equations of Second Order. American Mathematical Society, 1991.
[75] M. J. Anabtawi and S. Sathananthan, “Stability and convergence via lyapunov-like functionals of stochastic parabolic partial differential equations,” Appl. Math. Comput., vol. 157, pp. 201–218, 2004.
[76] P.-L. Lions and P. E. Souganidis, “Fully nonlinear stochastic partial differential equations,” Comptes Rendus de l’Acad´emie des Sciences-Series I - Mathematics, vol. 326, pp. 1085–1092, 1998.
[77] P.-L. Lions and P. E. Souganidis, “Uniqueness of weak solutions of fully nonlinear stochastic partial differential equations,” Comptes Rendus de l’Acad´emie des Sciences - Series I - Mathematics, vol. 331, pp. 783–790, 2000.
[78] P. L. Chow, “Stability of nonlinear stochastic-evolution equations,” J. Math. Anal. Appl., vol. 89, pp. 400–419, 1982.
[79] K. Zhou and P. P. Khargonekar, “Robust Stabilization of Linear Systems with Norm Bounded Time Varying Uncertainty,” Syst. Control Lett., vol. 10, pp. 17-20, 1998.
[80] M. Kamrani and S. M. Hosseini, “The role of coefficients of a general SPDE on the stability and convergence of a finite difference method,” J. Comput. Appl. Math., vol. 234, p. 1426-1434, 2010.
[81] A. M. Davie and J. G. Gaines, “Convergence of numerical schemes for the solution of parabolic stochastic partial differential equations,” Math. Comput., vol. 70, no. 233, pp. 121–134, 2001.
[82] J. C. Strikwerda, Finite Difference Schemes and Partial Differential Equations Second Edition. SIAM, 2004.
[83] G. Evans, J. Blackledge, and P. Yardley, Numerical Methods for Partial Differential Equations. Springer-Verlag, 2000.
[84] P. Lancaster and M. Tismenetsky, The Theory of Matrices: with Application Second Edition. Academic Press, 1985.
[85] F. P. Incropera and D. P. DeWitt, Introduction to heat transfer, John Wiley & Sons, 1996.
[86] A. L. Hodgkin and A. F. Huxley, "A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve," Journal of Physiology-London, vol. 117, pp. 500-544, 1952.
[87] T. Takagi and M. Sugeno, "Fuzzy Identification of Systems and Its Applications to Modeling and Control," IEEE Transactions on Systems Man and Cybernetics, vol. 15, pp. 116-132, 1985.