簡易檢索 / 詳目顯示

研究生: 黃信騰
Huang Hsin Teng
論文名稱: 兩旋轉圓盤間黏性液體流動模型之平衡解探討
Numerical Investigation for the Steady State Solutions of A Model for the Flow of Viscous Fluid Between Two Rotating Disks
指導教授: 簡國清
口試委員:
學位類別: 碩士
Master
系所名稱: 南大校區系所調整院務中心 - 應用數學系所
應用數學系所(English)
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 114
中文關鍵詞: 打靶法Runge–Kutta積分公式牛頓迭代法隱函數定理Liapunov–Schmidt降階法切線猜測法割線猜測法虛擬弧長延拓法轉彎點解分支分歧圖
外文關鍵詞: Shooting method, Runge–Kutta integral formula, Newton's interative method, Implicit function theorem, Liapunov–Schmidt reduction method, Tangent–predictor method, Secant–predictor method, Pseudo–arclength continuation method, Turning points, Solution branches, Bifurcation diagram
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要在探討兩旋轉圓盤間黏性液體流動模型之平衡解及其解路徑之特性﹒
    我們將利用隱函數定理﹑打靶法﹑Runge–Kutta積分公式和牛頓迭代法來求其平衡解路徑上的分支點﹐再使用Liapunov–Schmidt降階法﹑切線猜測法﹑割線猜測法和虛擬弧長延拓法等數值方法﹐延拓出整個解分支路徑﹒最後﹐選取特定參數﹐探討解分支路徑之分歧現象﹒


    This paper is mainly to discuss numerical investigation for the steady state solutions of a model for the flow of viscous fluid between two rotating disks.
    We will use Implicit function theorem, shooting method, Runge–Kutta integral formula and Newton's interative method to calculate branch points. Also, we use the Liapunov–Schmidt reduction method, Tangent–predictor method, Secant–predictor method and Pseudo–arclength continuation method to find out the multiple solutions. Finally, we try to change various parameters to continue the all the solution branches.

    第一章 緒論.............1 第二章 分歧問題..........3 2.1 分歧問題......3 2.2 隱函數定理與分歧理論......6 2.3 局部延拓法(Local Continuation Method)......8 2.4 虛擬弧長延拓法(Pseudo–Arclength Continuation Method)......10 第三章 非線性模型之分支點及其解分支的數值方法......13 3.1 平衡解之求法......13 3.2 過分支點之平衡解分支及其延拓方向......25 3.3 解分支之延拓......32 3.4 演算法......35 第四章 數值實驗......41 實驗(1.1)......42 實驗(1.2)......52 實驗(1.3)......61 實驗(2.1)......72 實驗(2.2)......81 第五章 結論......100 參考文獻......102

    [1] Allgower , E.L. and Chien, C.S., Continuation and local perturbation for multiple bifurcation, SIAM J. SCI. STAT. Comput., 7, pp.1265–1281, (1986).
    [2] Aselone, P. M. and Moore, R. H., An Extension of the Newton–Kantorovich Method for Sloving Nonlinear Equations with An Application to Elasticity. J. Math. Anal. 13, pp. 476–501, (1966).
    [3] Atkinson, K.E.,The numberical solution of bifurcation problems’SIAM J.Number, Anal., 14(4), 584–599(1977).
    [4] Brezzi, F.,Rappaz, J. and Raviart, P.A., Finite dimensional approximation of a bifurcation problems, Number. Math., 36,1–25(1980).
    [5] Crandall, M.G., An Introduction to Constructive Aspects of Bifurcation Theorem, edited by P. H. Rabinowtiz, Academic Press, pp.1–35, (1977).
    [6] Crandall, M.G., An Introduction to Constructive Aspects of Bifurcation and The Implicit Function Theorem, Application of Bifurcation Theorem, edited by P.H. Rabinowtiz, Academic Press, New York, (1977).
    [7] Crandall, M.G., and Rabinowitz, P.H., Bifurcation from simple eigenvalue, J. Funct. Anal., 8, pp.321–340,(1971).
    [8] Crandall, M.G. and Rabinowliz, P. H., Mathematical Theory of Bifurcation, Bifurcation Phenomena in Mathematical Physics and Related Topics, edit by Bardos, C. and Bessis, D., NATO Advanced Study Institute Series, (1979).
    [9] Eusebius Doedel Laurette S. Tuckerman, Numerical Methods for Bifurcation Problems and Large–Scale Dynamical Systems, (1999).
    [10] E. N. Lorenz, J. Atmospheric Sci.20 p130,p448, (1963).
    [11] Holodniok, M. and Kubicek, M., DERPER–An algorithm for continuation of periodic solution in Ordinary Differential Equations, J. Comp. Phys. Vol.55,254–267, (1984)
    [12] Jepson, A.D. and Spence, A., Numerical Methods for Bifurcation Problems, State of the Art in Numerical Analysis, edit bu A. Iserles, MJD Powe11, (1987).
    [13] Keller, H.B. and Langford, W.F., Iterations, perturbations and multiplicities for nonlinear bifurcation problems, Arch. Rational Mech. Anal., 48, pp83–108, (1972).
    [14] Keller, H.B., in “Recent Advances in Numerical Analysis”, Ed. By C. de Boor and G.H. Golub, Academic Press, New York, p.73, (1978).
    [15] Keller, H.B., Lectures on Numerical Methods in Bifurcation Problems, TATA Institute of Fundamental Research, Springer–Verlag, (1987).
    [16] Kubicek, M. and Marek, M., Computational Merhods in Bifurcation Theory and Dissipative Structures, Springer–Verlag, New York, (1983).
    [17] Magnus Kuper, External Forcing in a Glycolytic Model International Series of Numer. Math., Vol.79, (1987).
    [18] M. Kubicek and M. Marek, Evaluation of limit and bifurcation for algebraic and nonlinear boundary value problems, Appl. Math. Comput, (1979).
    [19] M. Holodniok, M. Kubicek, and M. Marek, Stable and unstable periodic solutions in the Lorenz model, preprints of the Math. Inst., Technical University Munchen, G.F.R.,(1982).
    [20] Rheinboldt, W.C., Solution Fields of Nonlinear Equations and Continuation Methods, SIAM J. Numer. Anal., 17, pp.221–237, (1980).
    [21] Rheinboldt, W.C., Numerical Analysis of Parameterized Nonlinear Equations, Wiley (New York).
    [22] Seydel, R., Practical Bifurcation and Stability Analysis: From Equilibrium to Chaos, (1994).
    [23] Wacker, H.(ed), Continuation Methods, Academic Press, New York, (1978).
    [24] W. T. Ang, The two–dimensional reaction–diffusion Brusselator system: a dual–reciprocity boundary element solution, Engineering Analysis with Boundary Elements 27 897–903,(2003).
    [25] 林慧芬, 非線性邊界值問題分歧點計算及其解路徑延拓,新竹教育大學碩士論文, (2005).
    [26] 陳彥芬, 一個超導模板模型解路徑之分歧問題探討, 新竹教育大學碩士論文, (2006).
    [27] 楊子昆, ㄧ個非等溫擴散反應模型的分支點計算及其解路徑延拓, 新竹教育大學碩士論文, (2008).
    [28] 莊景勝, ㄧ個非絕熱管狀反應器模型平衡解路徑上的實分歧與Hopf分歧問題探討, 新竹教育大學碩士論文, (2008).
    [29] 蔡春梅, 雙聯優混合電池模型平衡解路徑之Hopf分歧問題探討, 新竹教育大學碩士論文, (2006).
    [30] 蕭嘉璽, 半線性橢圓系統解路徑之分歧與延拓, 新竹教育大學碩士論文, (2006).
    [31] 雷普干,馬應南,分歧問題的逼近理論與數值方法,(1993).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE