簡易檢索 / 詳目顯示

研究生: 高士翔
Kao, Shih-Hsiang
論文名稱: 兆赫波段電子迴旋脈射諧波競爭研究
Competition between Harmonic Cyclotron Maser Interactions in the THz Regime
指導教授: 朱國瑞
Chu, Kwo-Ray
口試委員: 朱國瑞
Chu, Kwo-Ray
陳寬任
陳仕宏
張存續
寇崇善
劉偉強
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 48
中文關鍵詞: 迴旋管兆赫波模式競爭電漿物理電子迴旋脈射
外文關鍵詞: gyrotron, terahertz wave, mode competition, plasma physics, electron cyclotron maser
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Gyrotron devices are known as high power sources of coherent electromagnetic radiation. In the millimeter and sub-millimeter region, the power of gyrotron exceeds the power of classical microwave by many orders. In recent years, THz issues become popular due to its numerous applications showing the great importance of THz gyrotron.
    For the terahertz operation, there are two important issues. The first one is mode competition. THz wave damps very fast for the same distance compared with millimeter wave; as a consequence, high-order modes are preferable. On the other hand, some THz applications require a broad tuning range; because of this, high order mode is unavoidable with changing magnetic field, indicating that mode competition becomes an important issue. The other issue is that generating terahertz wave require high magnetic field which is too difficult to achieve. Hence, cyclotron harmonic interactions are a key physics issue of critical importance to the generation of THz radiation via the electron cyclotron maser instability in a manageable magnetic field. I present an inherent mechanism, as well as a deciding factor, which governs the competition between low and high harmonic interactions. Multi-mode simulations reveal the physical process in which a significant advantage develops for the lower-harmonic interaction, which eventually dominates in the fully nonlinear stage. Results also suggest a start-up scenario for persistent higher-harmonic operation and the stabilization methods of high harmonic operation.
    For some applications with wide magnetic field tuning range, there is likelihood that mode competition between same harmonic modes. The results, which conclude that the mode with smaller propagating constant has the advantage, shown through multi-mode simulations, would be explained by considering the intrinsic bunching mechanism.
    The purpose of this dissertation is discussing the physics principle of mode competitions, as well as in providing strategies for high power THz operations.


    Contents Abstract Chapter 1 Introduction 1 1.1 Applications of THz Wave and Sub-THz Wave 1 1.2 Basic Mechanisms of Electron Cyclotron Maser 2 1.3 Review of the Mode Competition in the Gyrotron Devices 4 1.3.1 Gyrotron Traveling Wave Tube Amplifier 5 1.3.2 Gyromonotron Oscillator 7 1.3.3 Gyrotron Backward Wave Oscillator 9 1.4 Overview 11 Chapter 2 Numerical Models 12 2.1 Time Dependent Simulation Model 12 2.1.1 Field Equations 13 2.1.2 Electron Dynamical Equations 16 2.1.3 Connection between Grid and Particle Quantities 17 2.1.4 Absorbing Boundary Condition 18 2.1.5 Power Calculation 19 2.2 Stationary Simulation 21 2.3 Small Signal Theory 23 Chapter 3 Competition between Different Harmonic Modes in the Gyrotron Oscillators 26 3.1 Harmonic Interactions 26 3.2 Fukui Terahertz Gyrotron 29 3.3 Competition between Different Harmonic Modes 31 3.4 Harmonic Mode Competition in Broad Resonance Gyro-BWO 35 3.5 The stabilization methods of high harmonic operation 37 Chapter 4 Mode Competition between Fundamental Harmonic modes 40 4.1 Azimuthal and Axial Bunching Competition 40 4.2 Mode Switching between Fundamental Harmonic Modes 41 Chapter 5 Conclusion 42 References 43

    [1] T. C. Luce, ‘‘Applications of high-power millimeter waves in fusion energy research,’’ IEEE Trans. Plasma Sci. 30, 734–754 (2002).
    [2] H. Bindslev, S. K. Nielsen, L. Porte, J. A. Hoekzema, S. B. Korsholm, F. Meo, P. K. Michelsen, S. Michelsen, J. W. Oosterbeek, E. L. Tsakadze, E.Westerhof, P. Woskov, and the TEXTOR team, Phys. Rev. Lett. 97, 205005 (2006).
    [3] M. Skolnik, ‘‘Role of radar in microwaves,’’ IEEE Trans. Microwave Theory Tech. 50, 625–632 (2002).
    [4] P. W. Fekete, G. F. Brand, and T. Idehara, ‘‘Scattering from discrete Alfve´n waves in a tokamak using a gyrotron radiation source,’’ Plasma Phys. Controlled Fusion 36, 1407–1417 (1994).
    [5] G. P. Timms, and G. F. Brand, ‘‘Millimeter-wave measurements of phase transitions in thiourea using a gyrotron,’’ Appl. Phys. Lett. 68, 2899–2901 (1996).
    [6] T. Idehara, I. Ogawa, S. Mitsudo, M. Pereyaslavets, N. Nishida, and K. Yoshida, ‘‘Development of frequency tunable, medium power gyrotrons (gyrotron FU series) as submillimeter wave radiation sources,’’ IEEE Trans. Plasma Sci. 27, 340–354 (1999).
    [7] T. Idehara, T. Saito, I. Ogawa, S. Mitsudo, Y. Tatematsu, La Agusu, H. Mori and S. Kobayashi, “Development of Terahertz FU CW Gyrotron Series for DNP” Appl. Magn. Reson. 34, 265-275 (2008).
    [8] Y. V. Bykov, and V. E. Semenov, ‘‘Processing of material using microwave radiation,’’ in Applications of High Power Microwaves, edited by A. V. Gaponov-Grekhov and V. L. Granatstein (Artech House, Norwood, MA), 319 (1994).
    [9] G. Link, L. Feher, M. Thumm, H. J. Ritzhaupt-Kleissl, R. Bohme, and A. Weisenburger, ‘‘Sintering of advanced ceramics using a 30-GHz, 10-kW, CW industrial gyrotron,’’ IEEE Trans. Plasma Sci. 27, 547–554. (1999).
    [10] T. Tatsukawa, A. Doi, M. Teranaka, H. Takashima, F. Goda, S. Watanabe, T. Idehara, T. Kanemaki, and T. Namba, ‘‘Microwave invasion through anti-reflecting layers of dielectrics at millimeter wave irradiation to living bodies,’’ IEEE Trans. Plasma Sci. 27, 547–554. (1999).
    [11] K. R. Chu, “The electron cyclotron maser,” Rev. Mod. Phys. 76, 489 (2004).
    [12] G.S. Nusinovich, Introduction to the Physics of Gyrotrons (John Hopkins Unversity Press, Maryland, 2004).
    [13] C. C. Chiu, C. Y. Tsai, S. H. Kao, K.R. Chu, L. R. Barnett, and N. C. Luhmann, Jr., “Study of a High-order-mode Gyrotron Traveling-wave Amplifier,” Phys. Plasmas 17, 113104(2010).
    [14] L. R. Barnett, L. H. Chang, H. Y. Chen, K. R. Chu, W. K. Lau and C. C. Tu, “An experimental wideband gyrotron traveling-wave amplifier,” Phys. Rev. Lett. 63, 1062 (1989).
    [15] K. R. Chu, L. R. Barnett, W. K. Lau, L. H. Chang, A. T. Lin, and C. C. Lin, ‘‘Nonlinear dynamics of the gyrotron traveling-wave amplifier,’’ Phys. Fluids B 3, 2403–2408(1991).
    [16] M. Caplan, A. T. Lin, and K. R. Chu, “A study of the saturated output of a TE01 gyrotron using an electro magnetic finite-size particle code,” Int. J. Electron. 53, 659–671(1982).
    [17] K. R. Chu, L. R.Barnett, W. L. Lau, L. H. Chang, and H. Y. Chen, “A Wide-Band Millimeter-Wave Gyrotron Traveling-Wave Amplifier Experiment”, IEEE Trans. Electron Devices, 37, 1557 (1990).
    [18] A. V. Gaponov, A. L. Gol’denberg, D. P. Grigor’ev, I. M. Orlova,T. P. Pankratova, and M. I. Petelin, ‘‘Induced synchrotronradiation of electrons in cavity resonators,’’ JETP Lett. 2, 267–269(1965).
    [19] A. V. Gaponov, A. L. Gol’denberg, M. I. Petelin, and V. K. Yulpatov, ‘‘A device for centimeter, millimeter, and submillimeterwave generation,’’ USSR Patent No. 223931(1967).
    [20] K. E. Kreischer and R. J. Temkin, “Single-mode operation of a high-power, step-tunable gyrotron,” Phys. Rev. Lett. 59,547(1987).
    [21] G. S. Nusinovich, O. V. Sinitsyn,and T. M. Antonsen,” Mode switching in a gyrotron with azimuthally corrugated resonator,” Phys. Rev. Lett. 98, 205101(2007).
    [22] O. Dumbrajs, Y. Kominis, and G. S. Nusinovich, “Electron dynamics in the process of mode switching in gyrotrons,”Phys. Plasmas,16, 013102(2009).
    [23] G.S. Nusinovich, “Review of the theory of mode interaction in gyrodevices,” IEEE Trans. Plasma Sci. 27, 313(1999).
    [24] R. H. Pantell, “Backward-wave oscillations in an unloaded waveguide,” Proc. IRE 47, 1146 (1959).
    [25] S. Y. Park, R. H. Kyser, C.M. Armstrong, R. K .Parker andV. L. Granatstein, “Experimental study of a Ka-band gyrotron backward-wave oscillator,”IEEE Trans. Plasma Sci. 18, 321 (1990).
    [26] C. S. Kou, S. H. Chen, L. R. Barnett, H. Y. Chen, and K. R. Chu, “Experimental study of an injection-locked gyrotron backward-wave oscillator,” Phys. Rev. Lett. 70, 924 (1993).
    [27] M. A. Basten, W. C. Guss, K. E. Kreischer, R. J. Temkin, and M. Caplan, “Experimental study of an injection-locked gyrotron backward-wave oscillator” Int. J. Infrared Millim. Waves 16, 889 (1995).
    [28] W. He, A. W. Cross, C. G. Whyte, A. R. Young, A. D. R. Phelps, K. Ronald, E. G. Rafferty, J. Thomson, C. W. Robertson, D. C. Speirs, S.V. Samsonov, V. L. Bratman, and G. G. Denisov, Proceedings of the 29th International Conference on Infrared and Millimeter Waves, edited by M. Thumm and W. Wiesbeck (IEEE, New York, 2004), p. 235.
    [29] C. S. Kou, C. H. Chen, and T. J. Wu, “Mechanisms of efficiency enhancement by a tapered waveguide in gyrotron backward wave oscillators,” Phys. Rev. E 57, 7162 (1998).
    [30] K. R. Chu, H.Y. Chen, C. L. Hung, T. H. Chang, L. R.Barnett, S. H. Chen, T. T. Yang, and D. Dialetis, “Theory and experiment of ultrahigh-gain gyrotron traveling wave amplifier,”IEEETrans. Plasma Sci. 27, 391 (1999).
    [31] K. F. Pao, T. H. Chang, C. T. Fan, S. H. Chen, C. F. Yu, and K. R. Chu, “Dynamics of Mode competition in the gyrotron backward-wave oscillator,” Phys. Rev. Lett.95, 185101 (2005).
    [32] K. F. Pao, T. H. Chang, S. H. Chen and K. R. Chu, “Rise and Fall Time behavior of the gyrotron backward-wave oscillator,” Phys. Rev. E 74, 46405 (2006).
    [33] K. F. Pao, C. T. Fan, T. H. Chang, C. C. Chiu, and K. R. Chu, “Selective suppression of high order axial modes of the gyrotron backward-wave oscillator,” Phys. Plasmas 14, 093301(2007).
    [34] B. Boashash, Time-Frequency Signal Analysis (Halsted Press, New York, 1992).
    [35] C.W. Peters, R. L. Jaynes, Y.Y. Lau, R. M. Gilgenbach, W. J. Williams, J. M. Hochman, W. E. Cohen, J. I. Rintamaki, D. E. Vollers, and T. A. Spencer, “Time-frequency analysis of modulation of high-power microwaves by electron-beam voltage fluctuations,”Phys. Rev. E 58, 6880 (1998).
    [36] T. H. Chang, S. H. Chen, L. R. Barnett, and K. R. Chu, “Characterization of stationary and nonstationary behavior in gyrotron oscillators,” Phys. Rev. Lett. 87, 064802 (2001).
    [37] Yu. N. Grigoryev, V. A. Vshivkov and M. P. Fedoruk, Numerical “particle-in-cell” methods(Walter de Gruyter Inc., Boston, 2002)
    [38] F. H. Harlow, “A Machine Calculation Method for Hydrodynamic Problems,” Los Alamos Scientific Laboratory report LAMS-1956 (1955).
    [39] F. E. Allen, “A History of Language Processor Technology in IBM,” IBM Journal of Research and Development (IBM) 25 (1981).
    [40] C. K. Birdsall, A. B. Langdon, “Plasma Physics via Computer Simulation,”(Taylor & Francis, 1985)
    [41] R. W. Hockney, and J. W. Eastwood, “Computer simulation using particles,” (Taylor & Francis, 1989)
    [42] J. M. Dawson, “Particle Simulation of Plasmas,” Rev. Mod.Phys.55, 403 (1983).
    [43] G. R. Liu, and M.B. Liu, Smoothed Particle Hydrodynamics: A Meshfree Particle Method,(World Scientific, 2003).
    [44] F. H. Harlow, “The particle-in-cell computing method for fluid dynamics,” Methods Comput. Phys.3, 319 (1964)
    [45] CST Computer Simulation Technology, “CST PARTICLE STUDIO®(CST PS),” (2010).
    [46] Tech X cooperation, “User’s guide for OOPic pro”, Tech X cooperation (2009).
    [47] K. F. Pao “Axial mode interaction in the gyrotron backward wave oscillator” NTHU press (2005)
    [48] R. Courant, K. Friedrichs, and H. Lewy, “On the partial difference equations of mathematical physics,”IBM Journal, 215 (March 1967, English translation of the 1928 German original).
    [49] K. R. Chu, “Lecture notes for the nonlinear formulation for gyro-TWT and CARM amplifier”
    [50] A. Taflove, “Computational Electrodynamics. The Finite-Difference Time-Domain Method,”(Artech House, 1995), Chap. 2 and Chap. 3.
    [51] P. N. Lin, S. H. Kao, G. N. Lin, C. C. Chiu and K. R. Chu, “Efficiency Enhancement in Gyrotron Backward Wave Oscillator with Nonlinear Tapered Structure,” Proceeding of 2010 8th International Vacuum Electron Sources Conference on Nanocarbon,” (2010)
    [52] A. K. Ganguly and S. Ahn, "Optimization of the efficiency in gyrotron backward‐wave oscillator via a tapered axial magnetic field," Appl. Phys. Lett. 54, 514 (1989).
    [53] G. S. Nusinovich, A. N. Vlasov, and T. M. Antonsen, Jr., "Nonstationary phenomena in tapered gyro-backward-wave oscillators, " Phys. Rev. Lett.87, 218301 (2001).
    [54] C. S. Kou, and F. Tseng, “Linear theory of gyrotron traveling wave tubes with nonuniform and lossy interaction structures,” Phys. Plasmas,5, 2454 (1998).
    [55] C. S. Kou, and F. Tseng, “Starting oscillation condition for gyrotron backward wave oscillator, “Phys. Plasmas,1, 3093 (1994).
    [56] S. Y. Park, V. L. Granatstein, and R. K. Parker, "A linear theory and design study for a gyrotron backward-wave oscillator," Int. J. Electron.57, 1109 (1984).
    [57] H. Bateman, Tables of Integral Transforms, Vol. 2, p. 362 (McGraw-Hill, New York,1954).
    [58] K. R. Chu, and J. L. Hirshfield, ‘‘Comparative study of the axial and azimuthal bunching mechanisms in electromagnetic cyclotron instabilities,” Phys. Fluids 21, 461 (1978).
    [59] C. S. Kou, Q. S. Wang, D. B. McDermott, A. T. Lin, K. R.Chu, and N. C. Luhmann, Jr., ‘‘High-power harmonic gyro-TWT. Part I: Linear theory and oscillation study,’’ IEEE Trans. Plasma Sci. 20, 155 (1992).
    [60] A. T. Lin, K. R. Chu, C. C. Lin, C. S. Kou, D. B. McDermott, and N. C. Luhmann, Jr., ‘‘Marginal stability design criterion for gyro-TWTs and comparison of fundamental with second harmonic operation,’’ Int. J. Electron. 72, 873 (1992).
    [61] Q. S. Wang, C. S. Kou, D. B. McDermott, A. T. Lin, K. R. Chu, and N. C. Luhmann, Jr., ‘‘High-power harmonic gyro-TWTs—Part II: Nonlinear theory and design,’’ IEEE Trans. Plasma Sci. 20, 163 (1992).
    [62] Q. S. Wang, D. B. McDermott, and N. C. Luhmann, Jr., ‘‘Demonstration of marginal stability theory by a 200-kWsecond-harmonic gyro-TWT amplifier,’’ Phys. Rev. Lett.75,4322 (1995).
    [63] Q. S. Wang, D. B. McDermott, and N. C. Luhmann, Jr., ‘‘Operation of a stable 200-kW second-harmonic gyro-TWT amplifier,’’ IEEE Trans. Plasma Sci. 24, 700 (1996).
    [64] La Agusu, T. Idehara, H. Mori, T. Saito, I. Ogawa, S. Mitsudo, “Design of a CW 1 THz Gyrotron (Gyrotron Fu Cw III) Using a 20 T Superconducting Magnet,” Int. J. Infrared Millim. Waves 28, 315 (2007).
    [65] S. H. Kao, C. C. Chiu, K. F. Pao and K. R. Chu, “Fundamental and harmonic mode competition in the gyrotron oscillator” International Conference on Infrared, Millimeter, and Terahertz Waves, (2010)
    [66] S. H. Kao, C. C. Chiu, and K. R. Chu, “Competition between Fundamental and Harmonic Modes in the Gyro-BWO,” International Conference on Infrared, Millimeter, and Terahertz Waves, (2009).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE