研究生: |
林佳樺 Lin, Chia-Hua |
---|---|
論文名稱: |
探討UTF1在多功能幹細胞內對神經分化的功能及調節機制 The function and regulatory mechanism of UTF1 in neuronal differentiation of pluripotent stem cells |
指導教授: |
陳怡榮
Chen, Yi-Rong 蔡世峰 Tsai, Shih-Feng |
口試委員: |
陳令儀
Chen, Linyi 顏伶汝 Yen, Betty Lin-Ju 徐欣伶 Hsu, Hsin-Ling |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2013 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 77 |
中文關鍵詞: | 多功能幹細胞 、胚胎細胞轉錄因子 、神經分化 |
外文關鍵詞: | Pluripotent stem cells, Undifferentiated embryonic cell transcription 1, neuronal differentiation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
未分化胚胎細胞轉錄因子(UTF1)是胚胎多功能幹細胞(Embryonic stem ells, ES) 的一項重要指標,它能標示ES細胞是否具有分化成各式細胞的能力 (pluripotency)。但是,UTF1如何影響分化仍不清楚。為了研究UTF1在分化上的角色,我們利用胚胎多功能幹細胞及同樣具有分化能力的胚胎癌細胞(Embryonic carcinoma cells)作研究。由P19胚胎癌細胞中所篩選出的缺乏UTF1表現的細胞株和原本正常的P19細胞比較,我們發現缺乏UTF1的細胞株具有較好的神經分化潛能。在P19細胞中,利用小干擾RNA (siRNA) 抑制UTF1表現也能增進維生素A酸 (Retinoic acid, RA) 誘導產生的神經分化,這結果和我們在缺乏UTF1表現的P19細胞株所得到的結果相同。在缺乏UTF1表現的P19細胞株中,重新表現UTF1會抑制RA誘導產生的神經分化。有趣的是,我們發現減少UTF1並不會影響貼附的未分化P19細胞的生長,但是會讓P19細胞在RA處理的胚胎體狀態時有較好的生長能力。和P19胚胎癌細胞的結果相同, 降低UTF1表現會使得胚胎幹細胞在自發性分化或RA誘導後,外胚層神經細胞標誌GAP43的表現會有明顯增加。所以,我們認為缺乏UTF1表現會容易誘導EC和ES細胞產生神經分化。最近的研究結果顯示, Pin1 (peptidyl-prolyl isomerase 1)可以經由調控 Oct4 和Nanog蛋白的磷酸化而維持胚胎幹細胞的生長及分化。我們證實Pin1可以直接和UTF1結合,但是這結合並不需要UTF1蛋白磷酸化。在P19細胞中,失去對Pin1結合能力的突變型UTF1無法抑制RA誘導的神經分化。因此,實驗結果顯示在P19細胞中,UTF1可以被Pin1調控而有抑制神經分化的功能。
UTF1 (undifferentiated embryonic cell transcription factor 1) is a marker for the pluripotency of embryonic stem (ES) cells but how it affects differentiation remains unclear. To study its role in the process, we used both ES cells and embryonic carcinoma (EC) cells, which are pluripotent teratocarcinoma cells. We found that UTF1-deficient clones, isolated from P19 EC cells, showed higher neuronal-differentiating potential than the parental cell line. Consistent with this observation, suppression of UTF1 expression by RNA interference enhanced retinoic acid (RA)-induced neuronal differentiation in P19 cells. Moreover, reconstitution of UTF1 expression in UTF1-deficient clones decreased their ability to undergo neuronal differentiation. Interestingly, the growth rates of UTF1-deficient P19 cells did not differ from that of parental cells in adherent cultures, but increased in embryoid bodies during RA-induced differentiation. In ES cells, reduction of UTF1 expression increased expression of neuronal-ectoderm marker Gap43 during both spontaneous and RA-induced differentiation; this was consistent with the results in P19 cells. Therefore, we proposed that endogenous UTF1 prevented EC and ES cells from neuronal differentiation, and that the loss of UTF1 directed EC and ES cells toward a neuronal fate. Recently, Pin1, a peptidyl-prolyl isomerase, has been found to maintain self-renewal via modulating phosphorylation of Oct4 and Nanog. We demonstrated that Pin1 bond to UTF1 directly, but surprisingly, this interaction did not require phosphorylation of UTF1. UTF1 mutant that had lost Pin1 binding ability failed to suppress RA-induced neuronal differentiation in P19 cells. These results indicated that the function of UTF1 in inhibition of neuronal differentiation could be regulated by Pin1 in mouse EC cells.
Reference
1. Andrews P, Matin M, Bahrami A, et al. Embryonic stem (ES) cells and embryonal
carcinoma (EC) cells: opposite sides of the same coin. Biochem Soc Trans 2005; 33:
1526-1530.
2. Bibel M, Richter J, Schrenk K, et al. Differentiation of mouse embryonic stem cells
into a defined neuronal lineage. Nat Neurosci 2004;7: 1003-1009.
3. Boyer LA, Lee TI, Cole MF, et al. Core transcriptional regulatory circuitry in
human embryonic stem cells. Cell 2005; 122: 947-956.
4. Bradley A, Evans M, Kaufman MH, et al. Formation of germ-line chimaeras from
embryo-derived teratocarcinoma cell lines. Nature 1984; 309: 255-256.
5. Cai N, Li M, Qu J, et al. Post-translational modulation of pluripotency. Journal of
molecular cell biology 2012;4: 262-265.
6. Cassar PA, Stanford WL. Integrating post‐transcriptional regulation into the
embryonic stem cell gene regulatory network. J Cell Physiol 2012;227: 439-449.
7. Chambers I, Smith A. Self-renewal of teratocarcinoma and embryonic stem cells.
Oncogene 2004;23: 7150-7160.
8. Chambers I, Colby D, Robertson M, et al. Functional expression cloning of Nanog,
a pluripotency sustaining factor in embryonic stem cells. Cell 2003; 113: 643-655.
9. Chew J, Loh Y, Zhang W, et al. Reciprocal transcriptional regulation of Pou5f1 and
46
Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Mol Cell Biol 2005; 25:
6031-6046.
10. Edwards MK, Harris JF, McBurney MW. Induced muscle differentiation in an
embryonal carcinoma cell line. Mol Cell Biol 1983; 3: 2280-2286.
11. Evans M. Discovering pluripotency: 30 years of mouse embryonic stem cells.
Nature Reviews Molecular Cell Biology 2011; 12: 680-686.
12. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from
mouse embryos. Nature 1981; 292: 154-156.
13. Fujita E, Soyama A, Kawabata M, et al. BMP-4 and retinoic acid synergistically
induce activation of caspase-9 and cause apoptosis of P19 embryonal carcinoma cells
cultured as a monolayer. Cell Death Differ 1999; 6: 1109-1116.
14. Habara-Ohkubo A. Differentiation of beating cardiac muscle cells from a
derivative of P19 embryonal carcinoma cells. Cell Struct Funct 1996; 21: 101-110.
15. Hamada-Kanazawa M, Ishikawa K, Ogawa D, et al. Suppression of Sox6 in P19
cells leads to failure of neuronal differentiation by retinoic acid and induces retinoic
acid-dependent apoptosis. FEBS Lett 2004; 577: 60-66.
16. Jeong C, Cho Y, Kim M, et al. Phosphorylation of Sox2 cooperates in
reprogramming to pluripotent stem cells. Stem Cells 2010; 28: 2141-2150.
17. Jia J, Zheng X, Hu G, et al. Regulation of pluripotency and self-renewal of ESCs
47
through epigenetic-threshold modulation and mRNA pruning. Cell 2012; 151:
576-589.
18. Jones-Villeneuve EM, Rudnicki MA, Harris JF, et al. Retinoic acid-induced neural
differentiation of embryonal carcinoma cells. Mol Cell Biol 1983; 3: 2271-2279.
19. Jones-Villeneuve EM, McBurney MW, Rogers KA, et al. Retinoic acid induces
embryonal carcinoma cells to differentiate into neurons and glial cells. J Cell Biol
1982;94: 253-262.
20. Kashyap V, Rezende NC, Scotland KB, et al. Regulation of stem cell pluripotency
and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and
SOX2 pluripotency transcription factors with polycomb repressive complexes and
stem cell microRNAs. Stem cells and development 2009; 18: 1093-1108.
21. Keller G. Embryonic stem cell differentiation: emergence of a new era in biology
and medicine. Genes Dev 2005; 19: 1129-1155.
22. Kleinsmith LJ, Pierce GB. Multipotentiality of single embryonal carcinoma cells.
Cancer Res 1964; 24: 1544-1551.
23. Kooistra SM, van den Boom V, Thummer RP, et al. Undifferentiated embryonic
cell transcription factor 1 regulates ESC chromatin organization and gene expression.
Stem Cells 2010; 28: 1703-1714.
24. Kooistra SM, Thummer RP, Eggen BJ. Characterization of human UTF1, a
48
chromatin-associated protein with repressor activity expressed in pluripotent cells.
Stem Cell Res 2009; 2: 211-218.
25. Kooreman NG, Wu JC. Tumorigenicity of pluripotent stem cells: biological
insights from molecular imaging. Journal of the Royal Society Interface 2010; 7:
S753-S763.
26. Lee JH, Shin SY, Kim S, et al. Suppression of PTEN expression during
aggregation with retinoic acid in P19 mouse embryonal carcinoma cells. Biochem
Biophys Res Commun 2006; 347: 715-722.
27. Liou Y, Zhou XZ, Lu KP. Prolyl isomerase Pin1 as a molecular switch to
determine the fate of phosphoproteins. Trends Biochem Sci 2011;36: 501-514.
28. Liu N, Lu M, Tian X, et al. Molecular mechanisms involved in self‐renewal and
pluripotency of embryonic stem cells. J Cell Physiol 2007; 211: 279-286.
29. Liu A, Cheng L, Du J, et al. Diagnostic utility of novel stem cell markers SALL4,
OCT4, NANOG, SOX2, UTF1, and TCL1 in primary mediastinal germ cell tumors.
Am J Surg Pathol 2010; 34: 697-706.
30. Loh Y, Wu Q, Chew J, et al. The Oct4 and Nanog transcription network regulates
pluripotency in mouse embryonic stem cells. Nat Genet 2006; 38: 431-440.
31. Marikawa Y, Tamashiro DA, Fujita TC, et al. Aggregated P19 mouse embryonal
carcinoma cells as a simple in vitro model to study the molecular regulations of
49
mesoderm formation and axial elongation morphogenesis. Genesis 2009; 47: 93-106.
32. Masui S, Nakatake Y, Toyooka Y, et al. Pluripotency governed by Sox2 via
regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol 2007;9:
625-635.
33. Matsuda T, Nakamura T, Nakao K, et al. STAT3 activation is sufficient to maintain
an undifferentiated state of mouse embryonic stem cells. EMBO J 1999; 18:
4261-4269.
34. McBurney MW, Jones-Villeneuve EM, Edwards MK, et al. Control of muscle and
neuronal differentiation in a cultured embryonal carcinoma cell line. Nature 1982; 299:
165-167.
35. Mitsui K, Tokuzawa Y, Itoh H, et al. The homeoprotein Nanog is required for
maintenance of pluripotency in mouse epiblast and ES cells. Cell 2003; 113: 631-642.
36. Moretto-Zita M, Jin H, Shen Z, et al. Phosphorylation stabilizes Nanog by
promoting its interaction with Pin1. Proceedings of the National Academy of Sciences
2010; 107: 13312-13317.
37. Nichols J, Zevnik B, Anastassiadis K, et al. Formation of pluripotent stem cells in
the mammalian embryo depends on the POU transcription factor Oct4. Cell 1998; 95:
379-391.
38. Nishi M, Akutsu H, Masui S, et al. A distinct role for Pin1 in the induction and
50
maintenance of pluripotency. J Biol Chem 2011; 286: 11593-11603.
39. Nishimoto M, Miyagi S, Yamagishi T, et al. Oct-3/4 maintains the proliferative
embryonic stem cell state via specific binding to a variant octamer sequence in the
regulatory region of the UTF1 locus. Mol Cell Biol 2005; 25: 5084-5094.
40. Nishimoto M, Fukushima A, Okuda A, et al. The gene for the embryonic stem cell
coactivator UTF1 carries a regulatory element which selectively interacts with a
complex composed of Oct-3/4 and Sox-2. Mol Cell Biol 1999; 19: 5453-5465.
41. Okazawa H, Shimizu J, Kamei M, et al. Bcl-2 inhibits retinoic acid-induced
apoptosis during the neural differentiation of embryonal stem cells. J Cell Biol 1996;
132: 955-968.
42. Okuda A, Fukushima A, Nishimoto M, et al. UTF1, a novel transcriptional
coactivator expressed in pluripotent embryonic stem cells and extra-embryonic cells.
EMBO J 1998;17: 2019-2032.
43. Okumura-Nakanishi S, Saito M, Niwa H, et al. Oct-3/4 and Sox2 regulate Oct-3/4
gene in embryonic stem cells. J Biol Chem 2005; 280: 5307-5317.
44. Palmieri SL, Peter W, Hess H, et al. Oct-4 transcription factor is differentially
expressed in the mouse embryo during establishment of the first two extraembryonic
cell lineages involved in implantation. Dev Biol 1994; 166: 259-267.
45. Pierce G. Teratocarcinoma: model for a developmental concept of cancer. Curr
51
Top Dev Biol 1967; 2: 223-246.
46. Przyborski S, Christie V, Hayman M, et al. Human embryonal carcinoma stem
cells: models of embryonic development in humans. Stem cells and development 2004;
13: 400-408.
47. Robertson E, Bradley A, Kuehn M, et al. Germ-line transmission of genes
introduced into cultured pluripotential cells by retroviral vector. 1986.
48. Rossant J, McBurney MW. The developmental potential of a euploid male
teratocarcinoma cell line after blastocyst injection. J Embryol Exp Morphol 1982; 70:
99-112.
49. Saxe JP, Tomilin A, Schöler HR, et al. Post-translational regulation of Oct4
transcriptional activity. PloS one 2009; 4: e4467.
50. Soprano DR, Teets BW, Soprano KJ. Role of retinoic acid in the differentiation of
embryonal carcinoma and embryonic stem cells. Vitam Horm 2007; 75: 69-95.
51. Stewart CL, Kaspar P, Brunet LJ, et al. Blastocyst implantation depends on
maternal expression of leukaemia inhibitory factor. Nature 1992; 359: 76-79.
52. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from
adult human fibroblasts by defined factors. Cell 2007; 131: 861-872.
53. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse
embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663-676.
52
54. Tomioka M, Nishimoto M, Miyagi S, et al. Identification of Sox‐2 regulatory
region which is under the control of Oct‐3/4–Sox‐2 complex. Nucleic Acids Res 2002;
30: 3202-3213.
55. Trounson A. The production and directed differentiation of human embryonic
stem cells. Endocr Rev 2006; 27: 208-219.
56. Vaca P, Berna G, Araujo R, et al. Nicotinamide induces differentiation of
embryonic stem cells into insulin-secreting cells. Exp Cell Res 2008; 314: 969-974.
57. van den Boom V, Kooistra SM, Boesjes M, et al. UTF1 is a chromatin-associated
protein involved in ES cell differentiation. J Cell Biol 2007; 178: 913-924.
58. van der Heyden MA, Defize LH. Twenty one years of P19 cells: what an
embryonal carcinoma cell line taught us about cardiomyocyte differentiation.
Cardiovasc Res 2003; 58: 292-302.
59. van der Heyden MA, van Kempen MJ, Tsuji Y, et al. P19 embryonal carcinoma
cells: a suitable model system for cardiac electrophysiological differentiation at the
molecular and functional level. Cardiovasc Res 2003; 58: 410-422.
60. Van Hoof D, Muñoz J, Braam SR, et al. Phosphorylation dynamics during early
differentiation of human embryonic stem cells. Cell stem cell 2009; 5: 214-226.
61. Wang Z, Oron E, Nelson B, et al. Distinct lineage specification roles for NANOG,
OCT4, and SOX2 in human embryonic stem cells. Cell Stem Cell 2012; 10: 440-454.
53
62. Wang C, Xia C, Bian W, et al. Cell aggregation-induced FGF8 elevation is
essential for P19 cell neural differentiation. Mol Biol Cell 2006; 17: 3075-3084.
63. Williams RL, Hilton DJ, Pease S, et al. Myeloid leukaemia inhibitory factor
maintains the developmental potential of embryonic stem cells. Nature 1988; 336:
684-687.
64. Xu P, Davis RJ. c-Jun NH2-terminal kinase is required for lineage-specific
differentiation but not stem cell self-renewal. Mol Cell Biol 2010; 30: 1329-1340.
65. Yamaguchi TP, Bradley A, McMahon AP, et al. A Wnt5a pathway underlies
outgrowth of multiple structures in the vertebrate embryo. Development 1999; 126:
1211-1223.
66. Ying Q, Nichols J, Chambers I, et al. BMP induction of Id proteins suppresses
differentiation and sustains embryonic stem cell self-renewal in collaboration with
STAT3. Cell 2003; 115: 281-292.
67. Yoshida K, Chambers I, Nichols J, et al. Maintenance of the pluripotential
phenotype of embryonic stem cells through direct activation of gp130 signalling
pathways. Mech Dev 1994; 45: 163-171.
68. Yu J, Thomson JA. Pluripotent stem cell lines. Genes Dev 2008; 22: 1987-1997.
69. Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines
derived from human somatic cells. Science 2007; 318: 1917-1920.
54
70. Yu K, Kennedy CA, O'Neill MM, et al. Disparate cleavage of
poly-(ADP-ribose)-polymerase (PARP) and a synthetic tetrapeptide, DEVD, by apoptotic cells. Apoptosis 2001; 6: 151-160.
71. Zhao Y, Yin X, Qin H, et al. Two supporting factors greatly improve the efficiency
of human iPSC generation. Cell Stem Cell 2008; 3: 475-479.