簡易檢索 / 詳目顯示

研究生: 楊人豪
Yang, Ren-Hao
論文名稱: 過渡金屬摻雜氧化鎢作為水分解觸媒載體
Transition Metal Doped Tungsten Oxide as OER Catalyst Support
指導教授: 潘詠庭
Pan, Yung-Tin
口試委員: 陳翰儀
Chen, Han-Yi
張佳智
Chang, Chia-Chih
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 95
中文關鍵詞: 載體酸性環境導電度摻雜奈米線氧化鎢
外文關鍵詞: Support, Acid media, Conductivity, Dope, Nanowire, Tungsten Oxide
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 銥(Ir)和釕(Ru)的氧化物到目前為止是質子交換膜水分解模組(PEMWE)最常用的催化劑,因為它們在酸性環境下具有較低的活化過電位以及較高的穩定性。然而兩種金屬都屬於貴金屬,因此使用催化劑載體去提高單位質量的活性,並減少貴金屬的使用量,在降低成本以及質子交換膜水分解模組(PEMWE)的商業可行性起到了關鍵作用。在本研究中,氧化鎢被用作水分解(OER)催化觸媒的載體材料。並且透過摻雜酸性環境下穩定的過渡金屬鉬,去克服其在電化學應用上導電度的問題。本研究製備的一維奈米線,相較於商用的氧化鎢在導電度上有數量級的增加,被認為是電化學應用中非常有前景的抗氧化且酸性下穩定的催化劑載體。與沒有載體的催化劑相比,一維奈米線附載的Ir奈米顆粒催化劑在OER活性上有著顯著的改善。我們的工作充分利用了小於3 nm的Ir來達到減少Ir和Ru使用量的目標,並且說明了載體在酸性下的穩定程度和導電對於穩定性測試的重要性。


    Iridium oxide (IrO2) and Ruthenium oxide (RuO2) are by far the most used catalyst for polymer electrolyte membrane water electrolysis (PEMWE) due to their low over-potential and high stability in acid environment. Both metal oxides are precious metal oxides, and thus the use of proper catalyst support plays a critical role in reducing the usage of IrO2 or RuO2 by utilizing fine nanosize catalyst particles to increase mass specific activity and make PEMWE economically feasible. In the present study, tungsten oxide was studied for its potential as a oxygen evolution reaction(OER) catalyst due to its outstanding stability in acidic environments. The conductivity issue, which serves as the barrier for electrochemical applications was overcome by crystal phase engineering together with the incorporation of other acid stable transition metal species such as molybdenum. The prepared 1D nanowires showed orders of magnitude increase in conductivity and is considered a very promising oxidation resistant and acid stable catalyst support for electrochemical applications. The 1D nanowire supported Ir nanoparticle catalyst showed significant improvement in OER activity compare to non-supported catalyst. Our work has demonstrated the role of an acid stable and conductive support to stabilize and fully utilize the monodispersed sub 3 nm Ir nanocatalyst to meet the challenging goals for Ir or Ru reduction.

    目錄 一. 緒論..........................................................1 1.1 前言..........................................................1 1.2 水分解反應....................................................2 1.2.1 概述........................................................2 1.2.2 載體簡介....................................................4 1.2.3 觸媒簡介....................................................6 1.3 研究動機......................................................7 二. 文獻回顧......................................................8 2.1 觸媒載體的選擇.................................................8 2.2 氧化物載體摻雜................................................11 2.3 觸媒吸附.....................................................14 2.4 電化學檢測...................................................18 三. 實驗方法與儀器................................................25 3.1 實驗藥品.....................................................25 3.2 實驗器材.....................................................28 3.3 分析儀器.....................................................31 3.4 實驗方法.....................................................34 3.4.1 觸媒載體的合成..............................................34 3.4.2 銥觸媒吸附載體的合成........................................36 3.4.3 四探針試片的製備與量測......................................37 3.4.4 熱處理氧化和化學氧化........................................38 3.4.5 玻璃碳電極製備..............................................38 3.4.6 FTO玻璃工作電極製備.........................................40 3.4.7 電化學分析實驗..............................................41 四. 結果與討論...................................................44 4.1 水熱合成氧化鎢過程及產物分析...................................44 4.2 鉬摻雜線型氧化鎢過程及產物分析.................................49 4.3 載體電導度與維持度探討........................................54 4.4 銥觸媒的負載.................................................57 4.5 電化學分析...................................................62 4.5.1 旋轉圓盤電極(Rotating Disk Electrode, RDE)電化學活性及耐久度測試...............................................................62 4.5.2 導電玻璃為基材的電化學耐久度測試.............................70 五. 結論.........................................................82 六. 未來工作.....................................................84 七. 參考文獻.....................................................87 圖目錄 圖1-1. 不同氧化物在酸性溶液中於1 mA/cm2 析氧電流下的氧過電位與氧化物轉化的焓變關係圖[Copyright 1981. S. Trasatti (Ed.) Electrodes of Conductivity Metallic Oxides, Part B.According to reference[15]].3 圖2-1. OER析氧觸媒載體抗腐蝕測試結果(a)-(d)4種CV圖(2 V vs. RHE)維持1hr之前和之後的實驗),測量參數(100 mV/s 0.5~0.7 V vs. RHE) 在Ar環境下 0.5 M H2SO4,25°C)。(e) 其他測試材料比較圖[Copyright 2018, The Electrochemical Society.According to reference[35]]..............9 圖2-2. 為熱力學模擬圖在濃度10-6 mol/kg-H2O,pH=0 ,電位為1.0 V vs. SHE時,所得到各元素較為穩定存在的狀態[Copyright 2010, The Electrochemical Society.According to reference[39]..............10 圖2-3. FESEM的圖(a) 氧化鎢水合物合成在室溫使用濃度0.025 M WCl6 在乙醇中進200°C水熱反應1 hr (b) 反應3 hr (c) 6 hr (d) 12 hr[Copyright 2017, ACS crystal growth design. According to reference[43].....11 圖2-4. (a)IrO2和(b)RuO2的Density of state圖[Copyright materialsproject.org According to reference[46-49]].............13 圖2-5. (a)In2O3的density of state圖 (b) 摻雜SnO2成ITO的denstiy of state圖[Copyright 1981,S M Sze, Physics of Semiconductor Devices, 2nd Ed. According to reference[50]].............................13 圖2-6. (a) Mo摻雜W18O49奈米線的示意圖 (b,c) TEM和(d) HRTEM關於1 mol% Mo-doped W18O49的圖 (e) STEM圖和(f-h) Mo摻雜W18O49的 EDS mapping圖O(淺藍), W(綠), Mo(紫) [Copyright 2018,Journal Of The American Chemical Society. According to reference[54]]...................14 圖2-7. UV可見光譜對於(A) 為熱處理0.1 mM和2 mM K2IrCl6水溶液的檢測在pH13的情況下, (B) 2 mM K2IrCl6在pH13下進行熱處理50,60和65°C持續1 min和相同狀態進行90°C熱處理20 min的可見光圖譜, (C) 0.15 mM K2IrCl6在pH13熱處理30,40,50,60,70和80°C,並在最後均升溫到90°C並維持20 min的可見光圖譜[Copyright 2011,The Journal of Physical Chemistry Letters. According to reference[59]].....................................16 圖2-8. UV可見光譜對於(A) 在冰浴下將2 mM pH13經熱處理的銥前驅物溶液藉由3 M HNO3滴定到pH1製備出IrOx·nH2O 溶液(B) 酸縮後的IrOx·nH2O 溶液,用NaOH滴定從pH1-13的可見光圖譜(C) 2 mM pH13經熱處理的銥前驅物溶液(左),相同溶液由HNO3滴定到pH1(中)和用NaOH滴定回pH5的IrOx·H2O(右) [Copyright 2011, The Journal of Physical Chemistry Letters. According to reference[59]]..................................................17 圖2-9. OER的幾種可能反應機制[Copyright,2017 Advanced Energy Matrerial. Reaction mechanisms I-III are according to reference [71] whereas reaction mechanism IV is according to reference [72]]...........................................................20 圖2-10. 銥金屬價數轉換CV示意圖[Copyright Materials Today Chemistry,2017. According to reference [64]]....................20 圖2-11. 銥元素在不同耐久度測試條件下的損失量[Copyright Journal Of The Electrochemical Society,2019. According to reference [69]]......21 圖2-12. (a) Ir/SnO2·Sb 銅吸脫附的E-I圖(b) 三種觸媒銅吸脫附過程中的電荷轉移量比較圖[Copyright Journal of Materials Chemistry A, 2017. According to reference [73]]....................................22 圖3-1. WOx奈米線及其他摻雜載體的合成示意圖.........................35 圖3-2. 觸媒吸附觸媒載體示意圖......................................37 圖3-3. 玻璃碳電極薄膜層示意圖......................................39 圖3-4. 超音波噴塗示意圖...........................................40 圖3-5. 氣泡覆蓋狀態(左—RDE右—FTO)示意圖............................43 圖4-1. 不同時間的正丁醇溶液在室溫下攪拌的呈色狀態...................44 圖4-2. 不同時間的正丁醇溶液UV對應圖................................45 圖4-3. 濃度2.0582 WCl6(mg)/BuOH(mL)室溫下攪拌30 min後進烘箱熱處理(a) 6 hr (b) 12 hr (c) 24 hr (d) 48 hr..............................45 圖4-4. 濃度分別為(a,b) 1.092 WCl6(mg)/BuOH(mL) (c,d) 1.456 WCl6(mg)/BuOH(mL) (e,f) 1.82 WCl6(mg)/BuOH(mL)室溫下攪拌30 min後進烘箱熱處理12 hr的產物結果...........................................46 圖4-5. 不同前驅物狀態內含物比較圖(濃度2.058 WCl6(mg)/BuOH(mL),室溫).47 圖4-6. 奈米線氧化鎢SEM與XRD產物分析圖..............................48圖4-7. 不同MoCl5加入時間點示意圖(左)初始WCl6溶液(右)攪拌30 min WCl6溶液...............................................................50 圖4-8. 單純於室溫下攪拌WCl6正丁醇溶液30 min後的離心產物.............50 圖4-9. (a) 5 mol%Mo-WOx (b) 10 mol%Mo-WOx在室溫下攪拌30 min + MoCl5 10 min於200°C 12 hr後的水熱產物...................................50 圖4-10. 5 mol%Mo-WOx的SEM與XRD產物分析圖..........................51 圖4-11. (a) WOx(NW) (b) 5 mol% Mo-WOx奈米線直徑分布圖.............52 圖4-12. (a) Ir/WOx(NW)與Ir/WMoOx在經過FTO狀態及活性測試後的XPS-W4f軌域訊號比較圖 (b) Ir/WMoOx的Mo-3d軌域訊號圖譜 (c) Ir/WOx(NW)的XPS-W4f價態擬合圖 (d) Ir/WMoOx的XPS-W4f價態擬合圖........................53 圖4-13. 氧化鎢系列材料於不同氧化方式下的四探針導電度比較圖...........55 圖4-14. (a) 初始的WOx(NW) (b) 經過空氣下鍛燒200°C 1 hr WOx(NW) (c) 經過3.75 vol% H2O2+0.5 M H2SO4 6 hr WOx(NW) (d) 初始的WMoOx (e) 經過空氣下鍛燒200°C 1 hr WMoOx (f) 經過3.75 vol% H2O2+0.5 M H2SO4 6hr WMoOx...........................................................56 圖4-15. Ir/WOx(NW)的TEM圖譜......................................58圖4-16. Ir/WOx(NW)的XRD負載觸媒銥前後比較圖........................58圖4-17. Ir/WMoOx的TEM圖譜........................................59圖4-18. Ir/WMoOx(a)分散(b)團聚的Mapping疊圖(藍點-Ir, 紅點-W, 綠點-Mo..............................................................59圖4-19. Ir/WMoOx的XRD負載觸媒銥前後比較圖.........................60圖4-20. Ir/WO3 commercial的TEM圖譜...............................60圖4-21. Ir/C的TEM圖譜............................................61圖4-22. Ir/C的TGA升溫圖譜(升溫速度20°C/min, RT-800°C).............61圖4-23. 不同載體間以及商用觸媒銥黑初次測試LSV比較圖(1.2~1.7 V vs. RHE, 20 mV/s, loading 10.2 ugIr/cm2, 25°C, 2500 rpm, 0.5 M H2SO4)..........................................................62圖4-24. 不同載體間以及商用觸媒銥黑初次測試的Tafel slope比較圖(1.2~1.7 V vs. RHE, 20 mV/s, loading 10.2 ugIr/cm2, 25°C, 2500 rpm, 0.5 M H2SO4)..........................................................63圖4-25. (a) Ir/WO3 commercial 利用400°C 4 hr 空氣下鍛燒前後的LSV活性測試比較圖 (b) Ir/WO3 commercial 利用400°C 4 hr 空氣下鍛燒前後的XRD比較圖.............................................................64圖4-26. (a) Ir black (b) IrOx colloid (c) Ir/C (d) Ir/WOx(NW) (e) Ir/WMoOx (f) Ir/WO3 commercial利用定電流10 mA/cm2耐久度方式的3次測試I-t放電圖.......................................................65圖4-27. 不同材料利用定電流10 mA/cm2耐久度方式的3次測試平均比較圖..............................................................66圖4-28. (a) Ir/WO3 commercial利用定電流10 mA/cm2耐久度方式的3次測試I-t放電圖 (b) CP2初始、第一次暫停和最後的LSV活性比較圖................68圖4-29. 不同載體間以及商用觸媒銥黑五次質量活性(1.6 V vs. RHE)測試平均比較圖(1.2~1.7 V vs. RHE, 20 mV/s, loading 10.2 ugIr/cm2, 25°C, 2500 rpm, 0.5 M H2SO4)…….69圖4-30. (a) Ir black (b) Ir/C (c) Ir/WOx(NW) (d) Ir/WMoOx (e) Ir/WO3 commercial在FTO上耐久度1.55 V vs. RHE 6 hr的維持率點圖.....................................................71 圖4-31. (a) Ir black (b) Ir/C (c) Ir/WOx(NW) (d) Ir/WMoOx (e) Ir/WO3 commercial在FTO上耐久度1.7 V vs. RHE 6 hr的維持率點圖......72圖4-32. (a) Ir black (b) Ir/C (c) Ir/WOx(NW) (d) Ir/WMoOx (e) Ir/WO3 commercial在FTO上耐久度2 V vs. RHE 6 hr的維持率點圖........73 圖4-33. (a) Ir black (b) Ir/C (c) Ir/WOx(NW) (d) Ir/WMoOx (e) Ir/WO3 commercial在FTO上不同耐久度測試結果的活性維持率比較圖........74圖4-34. (a) 1.55 V (b) 1.7 V (c) 2 V vs. RHE Ir/C耐久度測試情況...75 圖4-35. (a) 0 hr(c) 1.55 V vs. RHE 6 hr(e) 2 V vs. RHE 6 hr氧化鎢奈米線 (b) 0 hr (d) 1.55 V vs. RHE 6 hr (f) 2 V vs. RHE 6 hr VulcanXC72R碳....................................................75 圖4-36. (a-c) Ir/WOx(NW) (d-f) Ir/WMoOx (g-i) Ir/WO3 commercial分別為剛經過電化學活性測試、1.55 V和2 V vs. RHE 6 hr的耐久度測試結果....76圖4-37. (a) Ir/WOx(NW)、Ir/WMoOx和Ir/WO3 commercial在經過FTO狀態及活性測試後的XPS-W4f軌域訊號比較圖 (b) Ir/WOx(NW)的XPS-W4f價態擬合圖 (c) Ir/WMoOx的XPS-W4f價態擬合圖 (d) Ir/WO3 commercial的XPS-W4f價態擬合圖...............................................................77圖4-38. (a) Ir/WOx(NW) (d) Ir/WMoOx (g) Ir/WO3 commercial在經過FTO狀態及活性測試後的XPS-W4f價態擬合圖 (b) Ir/WOx(NW) (e) Ir/WMoOx (h) Ir/WO3 commercial在經過1.55 V vs. RHE 6 hr的XPS-W4f價態擬合圖 (c) Ir/WOx(NW) (f) Ir/WMoOx (i) Ir/WO3 commercial在經過2 V vs. RHE 6 hr的XPS-W4f價態擬合圖..............................................78圖4-39. Ir/C、Ir/WOx(NW)、Ir/WMoOx和Ir/WO3 commercial在經過FTO狀態及活性測試後的XPS-Ir4f軌域訊號比較圖.................................79圖4-40. (a) Ir/C (b) Ir/WOx(NW) (c) Ir/WMoOx (d) Ir/WO3 commercial在經過FTO狀態及活性測試後的XPS-Ir 4f價態擬合圖.....................80圖4-41. Ir/C、Ir/WOx(NW)、Ir/WMoOx和Ir/WO3 commercial在經過FTO狀態及活性測試後的XPS-O1s軌域訊號比較圖..................................81圖6-1. (左)觸媒溶液與載體溶液的混溶狀況(右)合成的TEM圖..............84圖6-2. (左)為初始狀態(右)攪拌24 hr後的結果.........................85圖6-3. 觸媒銥於不同熱處理溫度下的析氧反應過電位及溶解狀態............86 表目錄 表1-1. 不同製備方法的比較..........................................5 表2-1. 不同觸媒材料相關文獻比較....................................23 表4-1. Mo-WOx的EDS定量結果.......................................50 表4-2. 5 mol%Mo-WOx的EDS定量結果.................................51 表4-3. 5 mol% Mo-WOx的ICP定量結果................................51 表4-4. Mo摻雜前後奈米線平均直徑大小(平均100根).....................52 表4-5. 不同離子半徑的比較.........................................52 表4-6. 比較有無摻雜Mo的W價態百分比比較圖...........................53 表4-7. 氧化鎢系列材料於不同氧化方式下的四探針導電度數據..............55 表4-8. 氧化鎢系列材料於不同氧化方式下的奈米線直徑量測平均數據........56 表4-9. Ir/WOx(NW)的EDS定量.......................................58 表4-10. Ir/WMoOx的EDS定量........................................60 表4-11. Ir/WO3 commercial的EDS定量...............................60 表4-12. Ir/C的TGA定量............................................61 表4-13. 不同載體間以及商用觸媒銥黑初次測試的數據比較.................63 表4-14. 不同材料利用定電流10 mA/cm2耐久度方式的3次測試平均數據比較...66 表4-15. 不同載體間以及商用觸媒銥黑五次質量活性測試的數據比較.........69 表4-16. 不同載體間以及商用觸媒銥黑在FTO上不同耐久度測試結果的活性維持率..74表4-17. 兩載體於不同測試條件下的厚度比較......................76 表4-18. 不同載體間的鎢價數擬合比例數據.............................78 表4-19 不同載體間於不同狀態下的鎢價數擬合比例數據...................79 表4-20. 不同載體間的銥價數擬合比例數據.............................80 表6-1. 不同樣品瓶的溶劑組成.......................................85

    七、參考文獻
    1. Schmidt, O.; Gambhir, A.; Staffell, I.; Hawkes, A.; Nelson, J.; Few, S., Future cost and performance of water electrolysis: An expert elicitation study. International Journal of Hydrogen Energy 2017, 42 (52), 30470-30492.
    2. Reier, T.; Nong, H. N.; Teschner, D.; Schlögl, R.; Strasser, P., Electrocatalytic Oxygen Evolution Reaction in Acidic Environments – Reaction Mechanisms and Catalysts. Advanced Energy Materials 2017, 7 (1), 1601275.
    3. Hara, M.; Badam, R.; Wang, G. J.; Huang, H.-H.; Yoshimura, M., Synthesis and Evaluation of Iridium Oxide Nanoparticle Catalysts Supported on Nitrogen-Doped Reduced Graphene Oxides. ECS Transactions 2018, 85 (11), 27-35.
    4. Hu, W.; Chen, S. L.; Xia, Q. H., IrO2/Nb-TiO2 electrocatalyst for oxygen evolution reaction in acidic medium. International Journal of Hydrogen Energy 2014, 39 (13), 6967-6976.
    5. Chang, X.; Sun, S.; Xu, X.; Li, Z., Synthesis of transition metal-doped tungsten oxide nanostructures and their optical properties. Materials Letters 2011, 65 (11), 1710-1712.
    6. Dhanasekaran, P.; Selvaganesh, S. V.; Bhat, S. D., A nitrogen and cobalt co-doped titanium dioxide framework as a stable catalyst support for polymer electrolyte fuel cells. RSC Advances 2016, 6 (91), 88736-88750.
    7. Hsieh, B.-J.; Tsai, M.-C.; Pan, C.-J.; Su, W.-N.; Rick, J.; Lee, J.-F.; Yang, Y.-W.; Hwang, B.-J., Platinum loaded on dual-doped TiO2 as an active and durable oxygen reduction reaction catalyst. NPG Asia Materials 2017, 9 (7), e403-e403.
    8. Spetter, D.; Tahir, M. N.; Hilgert, J.; Khan, I.; Qurashi, A.; Lu, H.; Weidner, T.; Tremel, W., Solvothermal Synthesis of Molybdenum–Tungsten Oxides and Their Application for Photoelectrochemical Water Splitting. ACS Sustainable Chemistry & Engineering 2018, 6 (10), 12641-12649.
    9. Chang, X.; Sun, S.; Zhou, Y.; Dong, L.; Yin, Y., Solvothermal synthesis of Ce-doped tungsten oxide nanostructures as visible-light-driven photocatalysts. Nanotechnology 2011, 22 (26), 265603.
    10. Zhang, N.; Jalil, A.; Wu, D.; Chen, S.; Liu, Y.; Gao, C.; Ye, W.; Qi, Z.; Ju, H.; Wang, C.; Wu, X.; Song, L.; Zhu, J.; Xiong, Y., Refining Defect States in W18O49 by Mo Doping: A Strategy for Tuning N2 Activation towards Solar-Driven Nitrogen Fixation. Journal of the American Chemical Society 2018, 140 (30), 9434-9443.
    11. Zhong, X.; Sun, Y.; Chen, X.; Zhuang, G.; Li, X.; Wang, J.-G., Mo Doping Induced More Active Sites in Urchin-Like W18O49 Nanostructure with Remarkably Enhanced Performance for Hydrogen Evolution Reaction. Advanced Functional Materials 2016, 26 (32), 5778-5786.
    12. Tavares, M.; Machado, S.; Mazo, L., Study of hydrogen evolution reaction in acid medium on Pt microelectrodes. Electrochimica Acta 2001, 46, 4359-4369.
    13. Trasatti, S., Physical electrochemistry of ceramic oxides. Electrochimica Acta 1991, 36 (2), 225-241.
    14. Da Silva, L. A.; Alves, V. A.; Trasatti, S.; Boodts, J. F. C., Surface and electrocatalytic properties of ternary oxides Ir0.3Ti(0.7−x)PtxO2. Oxygen evolution from acidic solution. Journal of Electroanalytical Chemistry 1997, 427 (1), 97-104.
    15. Schultze, J. W., Sergio Trasatti (Ed.): Electrodes of Conductivity Metallic Oxides, Part A. Elsevier Scientific Publishing Company, Amsterdam, New York 1980. Berichte der Bunsengesellschaft für physikalische Chemie 1981, 85 (5), 461-462.
    16. Laudise, R. A.; Nielsen, J. W., Hydrothermal Crystal Growth. Solid State Physics, Seitz, F.; Turnbull, D., Eds. Academic Press: 1961, Vol. 12, pp 149-222.
    17. Ahmadi, M.; Younesi, R.; Guinel, M. J. F., Synthesis of tungsten oxide nanoparticles using a hydrothermal method at ambient pressure. Journal of Materials Research 2014, 29 (13), 1424-1430.
    18. Polley, T. A.; Carter, W. B.; Poker, D. B., Deposition of zinc oxide thin films by combustion CVD. Thin Solid Films 1999, 357 (2), 132-136.
    19. Tam, K. H.; Cheung, C. K.; Leung, Y. H.; Djurišić, A. B.; Ling, C. C.; Beling, C. D.; Fung, S.; Kwok, W. M.; Chan, W. K.; Phillips, D. L.; Ding, L.; Ge, W. K., Defects in ZnO Nanorods Prepared by a Hydrothermal Method. The Journal of Physical Chemistry B 2006, 110 (42), 20865-20871.
    20. Li, N.; Teng, H.; Zhang, L.; Zhou, J.; Liu, M., Synthesis of Mo-doped WO3 nanosheets with enhanced visible-light-driven photocatalytic properties. RSC Advances 2015, 5 (115), 95394-95400.
    21. Mu, W.; Xie, X.; Li, X.; Zhang, R.; Yu, Q.; Lv, K.; Wei, H.; Jian, Y., Characterizations of Nb-doped WO3 nanomaterials and their enhanced photocatalytic performance. RSC Advances 2014, 4 (68), 36064-36070.
    22. Huynh, T.; Nguyen, A. V.; Pham, H.; Bach, L.; Ho, V. T. T., Synthesis the New Nanostructure Ti0.7Ir0.3O2 via Low Temperature Hydrothermal Process. Applied Mechanics and Materials 2018, 876, 64 - 70.
    23. Chang, X.; Sun, S.; Zhou, Y.; Dong, L.; Yin, Y., Solvothermal synthesis of Ce-doped tungsten oxide nanostructures as visible-light-driven photocatalysts. Nanotechnology 2011, 22, 265603.
    24. Nekita, S.; Nagashima, K.; Zhang, G.; Wang, Q.; Kanai, M.; Takahashi, T.; Hosomi, T.; Nakamura, K.; Okuyama, T.; Yanagida, T., Face-Selective Crystal Growth of Hydrothermal Tungsten Oxide Nanowires for Sensing Volatile Molecules. ACS Applied Nano Materials 2020, 3 (10), 10252-10260.
    25. Zhang, Z.; Feng, C.; Liu, C.; Zuo, M.; Qin, L.; Yan, X.; Xing, Y.; Li, H.; Si, R.; Zhou, S.; Zeng, J., Electrochemical deposition as a universal route for fabricating single-atom catalysts. Nature Communications 2020, 11 (1), 1215.
    26. 馬振基, 奈米材料科技原理與應用(第3版)2017, 全華圖書出版股份有限公司
    27. 孫世剛, 電催化納米材料2018, 化學工業出版社
    28. Ghadge, S. D.; Velikokhatnyi, O. I.; Datta, M. K.; Shanthi, P. M.; Tan, S.; Damodaran, K.; Kumta, P. N., Experimental and Theoretical Validation of High Efficiency and Robust Electrocatalytic Response of One-Dimensional (1D) (Mn,Ir)O2:10F Nanorods for the Oxygen Evolution Reaction in PEM-Based Water Electrolysis. ACS Catalysis 2019, 9 (3), 2134-2157.
    29. Kumari, S.; Ajayi, B. P.; Kumar, B.; Jasinski, J. B.; Sunkara, M. K.; Spurgeon, J. M., A low-noble-metal W1−xIrxO3−δ water oxidation electrocatalyst for acidic media via rapid plasma synthesis. Energy & Environmental Science 2017, 10 (11), 2432-2440.
    30. Oakton, E.; Lebedev, D.; Povia, M.; Abbott, D. F.; Fabbri, E.; Fedorov, A.; Nachtegaal, M.; Copéret, C.; Schmidt, T. J., IrO2-TiO2: A High-Surface-Area, Active, and Stable Electrocatalyst for the Oxygen Evolution Reaction. ACS Catalysis 2017, 7 (4), 2346-2352.
    31. Abbott, D. F.; Lebedev, D.; Waltar, K.; Povia, M.; Nachtegaal, M.; Fabbri, E.; Copéret, C.; Schmidt, T. J., Iridium Oxide for the Oxygen Evolution Reaction: Correlation between Particle Size, Morphology, and the Surface Hydroxo Layer from Operando XAS. Chemistry of Materials 2016, 28 (18), 6591-6604.
    32. Oh, H.-S.; Nong, H. N.; Reier, T.; Bergmann, A.; Gliech, M.; Ferreira de Araújo, J.; Willinger, E.; Schlögl, R.; Teschner, D.; Strasser, P., Electrochemical Catalyst–Support Effects and Their Stabilizing Role for IrOx Nanoparticle Catalysts during the Oxygen Evolution Reaction. Journal of the American Chemical Society 2016, 138 (38), 12552-12563.
    33. Shinozaki, K.; Zack, J. W.; Richards, R. M.; Pivovar, B. S.; Kocha, S. S., Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique. Journal of the Electrochemical Society 2015, 162 (10), F1144-F1158.
    34. Shinozaki, K.; Zack, J.; Richards, R.; Pivovar, B.; Kocha, S., Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique I. Impact of Impurities, Measurement Protocols and Applied Corrections. Journal of the Electrochemical Society 2015, 162, 1144-1158.
    35. Han, B.; Risch, M.; Belden, S.; Lee, S.; Bayer, D.; Mutoro, E.; Shao-Horn, Y., Screening Oxide Support Materials for OER Catalysts in Acid. Journal of the Electrochemical Society 2018, 165 (10), F813-F820.
    36. Sasaki, K.; Takasaki, F.; Noda, Z.; Hayashi, S.; Shiratori, Y.; Ito, K., Alternative Electrocatalyst Support Materials for Polymer Electrolyte Fuel Cells. 2010; Vol. 33(1), p 473-482.
    37. Singh, S.; Muralidhar, P.; Das, K.; Scott, S., Optimizing Middle of Line (MoL) Contact Cleaning to Preserve Tungsten (W) Integrity in Advanced Technology Nodes. ECS Transactions 2015, 69, 301-306.
    38. Acevedo-Peña, P.; Vazquez-Arenas, J.; Cabrera-Sierra, R.; Lartundo-Rojas, L.; González, I., Ti Anodization in Alkaline Electrolyte: The Relationship between Transport of Defects, Film Hydration and Composition. Journal of the Electrochemical Society 2013, 160 (6), C277-C284.
    39. Bessarabov, D.; wang, H.; Li, H.; Zhao, N., PEM Electrolysis for Hydrogen Production: Principles and Applications. 2015.
    40. Zheng, H.; Ou, J. Z.; Strano, M. S.; Kaner, R. B.; Mitchell, A.; Kalantar-zadeh, K., Nanostructured Tungsten Oxide – Properties, Synthesis, and Applications. Advanced Functional Materials 2011, 21 (12), 2175-2196.
    41. Balachandran, U.; Eror, N. G., Electrical conductivity in non-stoichiometric titanium dioxide at elevated temperatures. Journal of Materials Science 1988, 23 (8), 2676-2682.
    42. Rinaldi, F. G.; Arutanti, O.; Arif, A. F.; Hirano, T.; Ogi, T.; Okuyama, K., Correlations between Reduction Degree and Catalytic Properties of WOx Nanoparticles. ACS Omega 2018, 3 (8), 8963-8970.
    43. Nayak, A. K.; Sohn, Y.; Pradhan, D., Facile Green Synthesis of WO3·H2O Nanoplates and WO3 Nanowires with Enhanced Photoelectrochemical Performance. Crystal Growth & Design 2017, 17 (9), 4949-4957.
    44. Choi, H. G.; Jung, Y. H.; Kim, D. K., Solvothermal Synthesis of Tungsten Oxide Nanorod/Nanowire/Nanosheet. Journal of the American Ceramic Society 2005, 88 (6), 1684-1686.
    45. Hung, C. J.; Huang, Y. H.; Chen, C. H.; Lin, P.; Tseng, T. Y., Hydrothermal Formation of Tungsten Trioxide Nanowire Networks on Seed-Free Substrates and Their Properties in Electrochromic Device. IEEE Transactions on Components, Packaging and Manufacturing Technology 2014, 4 (5), 831-839.
    46. Chow, K.-F.; Carducci, T. M.; Murray, R. W., Electronic Conductivity of Films of Electroflocculated 2 nm Iridium Oxide Nanoparticles. Journal of the American Chemical Society 2014, 136 (9), 3385-3387.
    47. De Battisti, A.; Ferro, S.; Dal Colle, M., Electrocatalysis at Conductive Diamond Modified by Noble-Metal Oxides. The Journal of Physical Chemistry B 2001, 105 (9), 1679-1682.
    48. Bradlyn, B.; Elcoro, L.; Cano, J.; Vergniory, M. G.; Wang, Z.; Felser, C.; Aroyo, M. I.; Bernevig, B. A., Topological quantum chemistry. Nature 2017, 547 (7663), 298-305.
    49. Vergniory, M. G.; Elcoro, L.; Felser, C.; Regnault, N.; Bernevig, B. A.; Wang, Z., A complete catalogue of high-quality topological materials. Nature 2019, 566 (7745), 480-485.
    50. Sze, S.; Ng, K., Physics of Semiconductor Devices. John Wiley, New York NY 1981, 122-129.
    51. Chen, Z.; Li, W.; Li, R.; Zhang, Y.; Xu, G.; Cheng, H., Fabrication of highly transparent and conductive indium-tin oxide thin films with a high figure of merit via solution processing. Langmuir 2013, 23, 45, 13836-13842.
    52. Shannon, R., Revised Effective Ionic Radii and Systematic Study of Inter Atomic Distances in Halides and Chalcogenides. Acta Crystallographica Section A 1976, 32, 751-767.
    53. The nature of the chemical bond and the structure of molecules and crystals, by Linus Pauling. 2nd Edition. xvi + 450 pages. Cornell University Press, Ithaca, N. Y., 1940. Journal of the American Pharmaceutical Association 1941, 30 (1), 30-30.
    54. Zhang, N.; Jalil, A.; Wu, D.; Chen, S.; Liu, Y.; Gao, C.; Ye, W.; Qi, Z.; Ju, H.; Wang, C.; Wu, X.; Song, L.; Zhu, J.; Xiong, Y., Refining Defect States in W18O49 by Mo Doping: A Strategy for Tuning N2 Activation towards Solar-Driven Nitrogen Fixation. Journal of the American Chemical Society 2018, 140 (30), 9434-9443.
    55. Czoska, A. M.; Livraghi, S.; Chiesa, M.; Giamello, E.; Agnoli, S.; Granozzi, G.; Finazzi, E.; Valentin, C. D.; Pacchioni, G., The Nature of Defects in Fluorine-Doped TiO2. The Journal of Physical Chemistry C 2008, 112 (24), 8951-8956.
    56. Hirai, D.; Climent-Pascual, E.; Cava, R., Superconductivity in WO2.6F0.4 synthesized by reaction of WO3 with Teflon. 2012, 21010.
    57. Proscia, J.; Winter, C.; Reck, G.; Wen, G., Deposition of Fluorine Doped Tungsten Oxide Thin Films by Atmospheric Pressure Chemical Vapor Deposition. Material Research Society Proceedings 2011, 283.
    58. Okumura, M.; Konishi, E.; Ichikawa, S.; Akita, T., Preparation of iridium catalysts by deposition precipitation: Room temperature oxidation of CO. Studies in Surface Science and Catalysis 2000, 143, 345-352.
    59. Zhao, Y.; Hernandez-Pagan, E. A.; Vargas-Barbosa, N. M.; Dysart, J. L.; Mallouk, T. E., A High Yield Synthesis of Ligand-Free Iridium Oxide Nanoparticles with High Electrocatalytic Activity. The Journal of Physical Chemistry Letters 2011, 2 (5), 402-406.
    60. Kuwabara, T.; Tomita, E.; Sakita, S.; Hasegawa, D.; Sone, K.; Yagi, M., Characterization and Analysis of Self-Assembly of a Highly Active Colloidal Catalyst for Water Oxidation onto Transparent Conducting Oxide Substrates. The Journal of Physical Chemistry C 2008, 112 (10), 3774-3779.
    61. Yagi, M.; Tomita, E.; Sakita, S.; Kuwabara, T.; Nagai, K., Self-Assembly of Active IrO2 Colloid Catalyst on an ITO Electrode for Efficient Electrochemical Water Oxidation. The Journal of Physical Chemistry B 2005, 109 (46), 21489-21491.
    62. 胡啟章, 電化學原理與方法2002, 五南圖書出版股份有限公司
    63. Abbou, S.; Chattot, R.; Martin, V.; Claudel, F.; Solà-Hernandez, L.; Beauger, C.; Dubau, L.; Maillard, F., Manipulating the Corrosion Resistance of SnO2 Aerogels through Doping for Efficient and Durable Oxygen Evolution Reaction Electrocatalysis in Acidic Media. ACS Catalysis 2020, 10 (13), 7283-7294.
    64. Eftekhari, A., From pseudocapacitive redox to intermediary adsorption in oxygen evolution reaction. Materials Today Chemistry 2017, 4, 117-132.
    65. Tan, X. H.; Shen, J.; Semagina, N.; Secanell, M., Decoupling structure-sensitive deactivation mechanisms of Irf/IrOx electrocatalysts toward oxygen evolution reaction. Journal of Catalysis 2019, 371, 57-70.
    66. Cherevko, S.; Geiger, S.; Kasian, O.; Mingers, A.; Mayrhofer, K. J. J., Oxygen evolution activity and stability of iridium in acidic media. Part 2. - Electrochemically grown hydrous iridium oxide. Journal of Electroanalytical Chemistry 2016, 774, 102-110.
    67. Spöri, C.; Kwan, J. T. H.; Bonakdarpour, A.; Wilkinson, D. P.; Strasser, P., The Stability Challenges of Oxygen Evolving Catalysts: Towards a Common Fundamental Understanding and Mitigation of Catalyst Degradation. Angewandte Chemie International Edition 2017, 56 (22), 5994-6021.
    68. Zhao, S.; Yu, H.; Maric, R.; Danilovic, N.; Capuano, C. B.; Ayers, K. E.; Mustain, W. E., Calculating the Electrochemically Active Surface Area of Iridium Oxide in Operating Proton Exchange Membrane Electrolyzers. Journal of The Electrochemical Society 2015, 162 (12), F1292-F1298.
    69. Alia, S. M.; Anderson, G. C., Iridium Oxygen Evolution Activity and Durability Baselines in Rotating Disk Electrode Half-Cells. Journal of The Electrochemical Society 2019, 166 (4), F282-F294.
    70. Activity and Durability of Iridium Nanoparticles in the Oxygen Evolution Reaction. ECS Meeting Abstracts 2015.
    71. Bockris, J. O. M., Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic Evolution of Oxygen. The Journal of Chemical Physics 1956, 24 (4), 817-827.
    72. Rossmeisl, J.; Qu, Z. W.; Zhu, H.; Kroes, G. J.; Nørskov, J. K., Electrolysis of water on oxide surfaces. Journal of Electroanalytical Chemistry 2007, 607 (1), 83-89.
    73. Wang, L.; Song, F.; Ozouf, G.; Geiger, D.; Morawietz, T.; Handl, M.; Gazdzicki, P.; Beauger, C.; Kaiser, U.; Hiesgen, R.; Gago, A.; Friedrich, K., Improving the Activity and Stability of Ir Catalysts for PEM Electrolyzer Anodes by SnO2:Sb Aerogel Supports: Does V Addition play an Active Role in Electrocatalysis? Journal of Materials Chemistry A 2017, 5.
    74. Green, C. L.; Kucernak, A., Determination of the Platinum and Ruthenium Surface Areas in Platinum−Ruthenium Alloy Electrocatalysts by Underpotential Deposition of Copper. I. Unsupported Catalysts. The Journal of Physical Chemistry B 2002, 106 (5), 1036-1047.
    75. Green, C. L.; Kucernak, A., Determination of the Platinum and Ruthenium Surface Areas in Platinum−Ruthenium Electrocatalysts by Underpotential Deposition of Copper. 2. Effect of Surface Composition on Activity. The Journal of Physical Chemistry B 2002, 106 (44), 11446-11456.
    76. Abdullin, K. A.; Kalkozova, Z. K.; Markhabayeva, A. A.; Dupre, R.; Moniruddin, M.; Nuraje, N., Core–Shell (W@WO3) Nanostructure to Improve Electrochemical Performance. ACS Applied Energy Materials 2019, 2 (1), 797-803.
    77. Jin, B.; Hejazi, S.; Pyczak, F.; Oehring, M.; Mohajernia, S.; Kment, S.; Tomanec, O.; Zboril, R.; Nguyen, N. T.; Yang, M.; Schmuki, P., Amorphous Mo–Ta Oxide Nanotubes for Long-Term Stable Mo Oxide-Based Supercapacitors. ACS Applied Materials & Interfaces 2019, 11 (49), 45665-45673.
    78. Palacín, M. R.; Simon, P.; Tarascon, J. M., Nanomaterials for Electrochemical Energy Storage: the Good and the Bad. Acta chimica Slovenica 2016, 63 (3), 417-23.
    79. Mitchell, J. B.; Geise, N. R.; Paterson, A. R.; Osti, N. C.; Sun, Y.; Fleischmann, S.; Zhang, R.; Madsen, L. A.; Toney, M. F.; Jiang, D.-e.; Kolesnikov, A. I.; Mamontov, E.; Augustyn, V., Confined Interlayer Water Promotes Structural Stability for High-Rate Electrochemical Proton Intercalation in Tungsten Oxide Hydrates. ACS Energy Letters 2019, 4 (12), 2805-2812.
    80. Nayak, A. K.; Das, A. K.; Pradhan, D., High Performance Solid-State Asymmetric Supercapacitor using Green Synthesized Graphene–WO3 Nanowires Nanocomposite. ACS Sustainable Chemistry & Engineering 2017, 5 (11), 10128-10138.
    81. Felix, C.; Bladergroen, B. J.; Linkov, V.; Pollet, B.; Pasupathi, S., Ex-Situ Electrochemical Characterization of IrO2 Synthesized by a Modified Adams Fusion Method for the Oxygen Evolution Reaction. Catalysts 2019, 9, 318.
    82. Synthesis and Evaluation of Iridium Oxide Nanoparticle Catalysts Supported on Nitrogen-Doped Reduced Graphene Oxides. ECS Meeting Abstracts 2018.
    83. Gu, Y.; Jiang, X.; Sun, W.; Bai, S.; Dai, Q.; Wang, X., 1,2-Dichloroethane Deep Oxidation over Bifunctional Ru/CexAly Catalysts. ACS Omega 2018, 3 (8), 8460-8470.
    84. Laursen, A. B.; Gorbanev, Y. Y.; Cavalca, F.; Malacrida, P.; Kleiman-Schwarsctein, A.; Kegnæs, S.; Riisager, A.; Chorkendorff, I.; Dahl, S., Highly dispersed supported ruthenium oxide as an aerobic catalyst for acetic acid synthesis. Applied Catalysis A: General 2012, 433-434, 243-250.
    85. Wang, J.; Zhao, X.; Lei, N.; Li, L.; Zhang, L.; Xu, S.; Miao, S.; Pan, X.; Wang, A.; Zhang, T., Hydrogenolysis of Glycerol to 1,3-propanediol under Low Hydrogen Pressure over WOx -Supported Single/Pseudo-Single Atom Pt Catalyst. ChemSusChem 2016, 9 (8), 784-90.
    86. Zhao, X.; Wang, J.; Yang, M.; Lei, N.; Li, L.; Hou, B.; Miao, S.; Pan, X.; Wang, A.; Zhang, T., Selective Hydrogenolysis of Glycerol to 1,3-Propanediol: Manipulating the Frustrated Lewis Pairs by Introducing Gold to Pt/WOx. ChemSusChem 2017, 10 (5), 819-824.
    87. Khodzhemirov, V. A.; Yevdokimova, V. A.; Cherednichenko, V. M., Reaction of WCl6 with alcohols and the activity of the resulting catalysts in polymerization of cyclopentene. Polymer Science U.S.S.R. 1976, 18 (3), 581-588.
    88. Klejnot, O. J., Chloride Alkoxides of Pentavalent Tungsten. Inorganic Chemistry 1965, 4 (11), 1668-1670.
    89. El-Sayed, H. A.; Weiss, A.; Olbrich, L. F.; Putro, G. P.; Gasteiger, H. A., OER Catalyst Stability Investigation Using RDE Technique: A Stability Measure or an Artifact? Journal of The Electrochemical Society 2019, 166 (8), F458-F464.
    90. Zhao, Z.; Liu, H.; Gao, W.; Xue, W.; Liu, Z.; Huang, J.; Pan, X.; Huang, Y., Surface-Engineered PtNi-O Nanostructure with Record-High Performance for Electrocatalytic Hydrogen Evolution Reaction. Journal of the American Chemical Society 2018, 140 (29), 9046-9050.
    91. Cherevko, S.; Geiger, S.; Kasian, O.; Mingers, A.; Mayrhofer, K. J. J., Oxygen evolution activity and stability of iridium in acidic media. Part 1. – Metallic iridium. Journal of Electroanalytical Chemistry 2016, 773, 69-78.
    92. Castillero, P.; Rico-Gavira, V.; López-Santos, C.; Barranco, A.; Pérez-Dieste, V.; Escudero, C.; Espinós, J. P.; González-Elipe, A. R., Formation of Subsurface W5+ Species in Gasochromic Pt/WO3 Thin Films Exposed to Hydrogen. The Journal of Physical Chemistry C 2017, 121 (29), 15719-15727.
    93. Vasilopoulou, M.; Soultati, A.; Georgiadou, D. G.; Stergiopoulos, T.; Palilis, L. C.; Kennou, S.; Stathopoulos, N. A.; Davazoglou, D.; Argitis, P., Hydrogenated under-stoichiometric tungsten oxide anode interlayers for efficient and stable organic photovoltaics. Journal of Materials Chemistry A 2014, 2 (6), 1738-1749.
    94. Briggs, D., Handbook of X-ray Photoelectron Spectroscopy C. D. Wanger, W. M. Riggs, L. E. Davis, J. F. Moulder and G. E.Muilenberg Perkin-Elmer Corp., Physical Electronics Division, Eden Prairie, Minnesota, USA, 1979. 190. Surface and Interface Analysis 1981, 3 (4), v-v.
    95. Biesinger, M. C.; Payne, B. P.; Lau, L. W. M.; Gerson, A.; Smart, R. S. C., X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surface and Interface Analysis 2009, 41 (4), 324-332.
    96. Henry, W. P., Inorganic Chemistry, 3rd ed. (Sharpe, A.G.). Journal of Chemical Education 1993, 70 (11), A304
    97. Ma, Y.; Yang, H.; Guo, J.; Sathe, C.; Agui, A.; Nordgren, J., Structural and electronic properties of low dielectric constant fluorinated amorphous carbon films. Applied Physics Letters 1998, 72 (25), 3353-3355.
    98. Mountapmbeme Kouotou, P.; Vieker, H.; Tian, Z. Y.; Tchoua Ngamou, P. H.; El Kasmi, A.; Beyer, A.; Gölzhäuser, A.; Kohse-Höinghaus, K., Structure–activity relation of spinel-type Co–Fe oxides for low-temperature CO oxidation. Catalysis Science & Technology 2014, 4 (9), 3359-3367.

    QR CODE