簡易檢索 / 詳目顯示

研究生: 許峻偉
Hsu, Chun-Wei
論文名稱: 二氧化鈦奈米柱成長於矽與導電玻璃FTO之光水解分析
Analysis of solar water splitting by titanium dioxide nanorods on silicon and FTO substrates.
指導教授: 蔡哲正
Tsai, Cho-Jen
口試委員: 林居南
俎永熙
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 61
中文關鍵詞: 二氧化鈦光水解水分解奈米柱矽奈米線金紅石
外文關鍵詞: Photoelectrochemical, PEC, nanorods, Tio2 titanium dioxide, Rutile, water splitting
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二氧化鈦具有良好的光催化特性與穩定性已廣泛運用於觸媒及於光水解電極,其中又以奈米結構因在水分解中具有明顯的效率改善。本文將利用水熱法於高摻雜負型矽基板以及導電玻璃FTO上生成二氧化鈦奈米柱,並對其水分解能力特性進行量測以及表面形貌變化的觀察。主要探討退火溫度、以及二氧化鈦奈米柱之形貌以及長度對照光水分解的影響。研究利用濺鍍法於基板表面濺鍍鈦金屬層,經由熱氧化使表面具有二氧化鈦晶種層,將有助於不同基板上利用水熱法成長二氧化鈦。


    The Rutile nanorods (NRs) TiO2 for water splitting applications were prepared on Si, FTO, and silicon nanowires array (SiNWs) by hydrothermal method. A three-electrode system and solar simulator were used to measure the photocurrent of water splitting. In order to investigate the relationship between the morphologies of TiO¬2nanorods and the photo currents during bias, difference hydrothermal temperatures, precursor compositions, synthesized times, and various annealing conditions were performed. The currents of theTiO2NRs grown on FTO were optimized. Unfortunately, whenTiO2 NRs prepared on Silicon and SiNWs as the substrate, forming a three dimensional TiO2 structure, the negligible photocurrent were measured. To understand the reason of the current decrease, Mott-Schottky measurement and X-ray photoelectron spectroscopy (XPS) were used to show that at the interface of silicon and TiO2 the titanium did not complete oxidized. Instead of Ti film fully oxidized, silicon substrate was oxidized in the afterward annealing stage.

    第一章、緒論 1 1.1 簡介 1 1.2 研究目的與動機 2 第二章、文獻回顧 3 2.1 光水解 3 2.1.1 半導體材料性質 3 2.1.2 光水解機制 3 2.1.3 光水解材料 4 2.1.4 半導體能帶飄移與電容 5 2.1.5 光電流 7 2.1.6 參考電極 8 2.1.7 效率計算 10 2.2 二氧化鈦 10 2.2.1 二氧化鈦合成法 12 2.2.3 二氧化鈦金紅石奈米柱 14 2.4 異質接面 18 2.5 矽奈米線 19 第三章、實驗方法 22 3.1 實驗流程TiO2上成長一維二氧化鈦奈米柱 22 3.2 一維矽奈米線陣列 22 3.3 三維二氧化鈦奈米柱 23 3.4 退火 23 3.5 二氧化鈦奈米柱製作於矽基板 24 3.6 物理性質分析 24 3.7電化學量測 24 第四章、結果與討論 26 4.1 二氧化鈦成長於FTO上 26 4.1.1 成長形貌及晶體鑑定 26 4.1.2 電性量測 27 4.2 二氧化鈦成長於矽奈米線上 38 4.3 二氧化鈦晶種層於矽基板與FTO基板的探討 50 第五章、結論 55 參考文獻 56

    參考文獻
    [1] Fujishima, A., and Honda K, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, (1972), 238, 37–38.

    [2]Roel van de Krol, Yongqi Liang and Joop Schoonman,Solar hydrogen production with nanostructured metal oxides,J. Mater. Chem., (2008), 18, 2311–2320.

    [3]Santato, C., Odziemkowski, M., Ulmann, M., Augustynski, J., Crystallogra- phically oriented mesoporous WO3 films: synthesis, characterization, and applications. J. Am. Chem. Soc., (2001), 123, 10639–10649 .

    [4]Cesar, I., Sivula, K., Kay, A., Zboril, R., Grätzel, M.,Influence of feature size, film thickness,and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting., J. Phys. Chem. C (2009), 113, 772–782.

    [5]Adriana Paracchino, Vincent Laporte, Kevin Sivula, Grätzel. M, Elijah Thimsen, Highly active oxide photocathode for photoelectrochemical water reduction, Nature Materials, (2011),10, 456–461.

    [6] Ryu Abe, Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation, Journal of Photochemistry and Photobiology C: Photochemistry Reviews,(2010), 11, 179–209.

    [7] Chelikowsky, J.R., Cohen, M.L, Electronic-structure of silicon., Phys. Rev. B ,(1974), 10, 5095–5107

    [8]roel van de krol, Michael Graetzel, Photoelectrochemical Hydrogen production, Springer Science Bussiness media, (2012), cheaper 1,2,3,4.

    [9] Rebecca A. Parker, Static Dielectric Constant of Rutile (TiO2), 1.6-1060°K, Phys. Rev., (1961), 124, 1719–1722

    [10]Allen J. Bard, Larry R. Faulkner, Electrochemical Method Fundamentals and Applications, John Wiley & Sons, INC.New Yorke, (2001).

    [11] DJG Ives, GJ Janz, Reference Electrodes, Theory and Practice, Academic Press, NY"Handbook of Analytical Chemistry", L Meites, ed., McGraw Hill, NY, (1963), Sect 1.

    [12]Waldfried Plieth, Electrochemistry for Materials Science, Elsevier, (2008), cheaper 3.

    [13]D Reyes-Coronado, GRodr ıguez-Gattorno, M E Espinosa-Pesqueira, C Cab ,R de Coss and G Oskam, Phase-pure TiO2 nanoparticles: Anatase, Brookite and rutile, Nanotechnology,(2008),19, 145605.

    [14] Xiliang Nie, Shuping Zhuo, Gloria Maeng, and Karl Sohlberg, Review Article Doping of TiO2 Polymorphs for Altered Optical and Photocatalytic Properties., International Journal of Photoenergy, (2009), 22, 294042.

    [15] Chemseddine, A., Moritz, T., Eur. J., Inorg. Chem, Nanostructuring Titania: Control over Nanocrystal Structure, Size, Shape, and Organization, European Journal of Inorganic Chemistry, (1999), 2, 235–245.

    [16]Sugimoto, T., Zhou, X., Muramatsu, Synthesis of uniform Anatase TiO2 nanoparticles by gel-sol method. Shape control, A. J. Colloid Interface Sci, (2003), 259, 53.

    [17]Liu, S. M., Gan, L. M., Liu, L. H., Zhang, W. D., Zeng, H. C., Synthesis of Single-Crystalline TiO2 Nanotubes, Chem. Mater., (2002), 14, 1391.

    [18]Miao, L., Tanemura, S., Toh, S., Kaneko, K., Tanemura, M., Fabrication, characterization and Raman study of anatase-TiO2 nanorods by a heating-sol–gel template process , J. Cryst. Growth, (2004), 264, 246–252.

    [19] Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., Niihara, K.,Titania Nanotubes Prepared by Chemical Processing, Advance Materials, (1999), 11, 1307–1311.

    [20] Zhang, Y. X., Li, G. H., Jin, Y. X., Zhang, Y., Zhang, J., Zhang, L. D., Hydrothermal synthesis and photoluminescence of TiO2 nanowires, Chem. Phys. Lett. (2002), 365, 300–304.

    [21] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, Formation of Titanium Oxide Nanotube, Langmuir, (1998), 14, 4, 3160–3163.

    [22] ]Xinjian Feng, Karthik Shankar, Oomman K. Varghese, Maggie Paulose,
    Thomas J. Latempa, and Craig A.Grimes, Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications, NANO LETTERS,(2008), 8, 11, 3781–3786

    [23]Xinsheng Penga, Aicheng Chen, Aligned TiO2 nanorod arrays synthesized by oxidizing titanium with acetone., J. Mater. Chem., (2004), 14, 2542–2548

    [24] Gopal K. Mor, Karthik Shankar, Maggie Paulose, Oomman K. Varghese, and
    Craig A. Grimes,Enhanced Photocleavage of Water Using Titania Nanotube Arrays, NANO LETTERS, (2005), 5, 1,191–195.

    [25]Liu, S., Huang, K., Straightforward fabrication of highly ordered TiO2 nanowire arrays in AAM on aluminum substrate., Solar Energy Mater. Sol. Cells, (2004), 85, 125–131.

    [26]Imanishi, A., Okamura, T., Ohashi, N., Nakamura, R., Nakato, Y., Mechanism of water photooxidation reaction at atomically flat TiO2 (rutile) (110) and (100) surfaces: dependence on solution pH., J. Am. Chem. Soc. (2007), 129, 11569–11578.

    [27] Xinjian Feng, Karthik Shankar, Oomman K. Varghese, Maggie Paulose,
    Thomas J. Latempa, and Craig A. Grimes,Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications, NANO LETTERS, (2008) , 8, 11, 3781–3786.

    [28] Panpan Sun, Xintong Zhang, Xueping Liu, Lingling Wang, Changhua Wang, Jikai Yang and Yichun Liu, Growth of single-crystalline rutile TiO2 nanowire array on titanate nanosheet film for dye-sensitized solar cells., J. Mater. Chem., (2012), 22, 6389–6393

    [29] Gang Liu, Lianzhou Wang, Hua Gui Yang, Hui-Ming Cheng and Gao Qing (Max) Lu, Photoelectrochemical Properties of TiO2 Nanowire Arrays: A Study of the Dependence on Length and Atomic Layer Deposition Coating, J. Mater. Chem., (2010), 20, 831–843.

    [30] Xiuqing Meng, Yan Wang, Meili Wang, Jielei Tuc and Fengmin Wua, Improved performance of dye-sensitized solar cells with TiO2 nanocrystal/ nanowires double-layered films as photoelectrode, RSC Advances, (2013), 3, 3304–3308.

    [31] Won-Sik Kim, Yun-Guk Jang, Dai-Hong Kim, Hong-Chan Kim and Seong-Hyeon Hong, Hetero-epitaxial growth of vertically-aligned TiO2 nanorods on an m-cut sapphire substrate with an (001) SnO2 buffer layer, CrystEngComm, (2012), 14, 4963–4966.

    [32] Chuanwei Cheng, Yee Yan Tay, Huey Hoon Hngand Hong Jin Fan, Solution heteroepitaxial growth of dendritic SnO2/TiO2 hybridNanowires., J. Mater. Res., (2011), 26, 17, 2254–2260.

    [33]Gongming Wang, Hanyu Wang, Yichuan Ling, Yuechao Tang, Xunyu Yang, Robert C. Fitzmorris, Changchun Wang, Jin Z. Zhang, and Yat Li, Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting ,Nano Lett. (2011), 11, 3026–3033.

    [34] Qing Kang,a, Junyu Cao,b, Yuanjian Zhang,a, Lequan Liu,a, Hua Xuabc and Jinhua Ye, Reduced TiO2 nanotube arrays for photoelectrochemical water splitting, J. Mater. Chem. A, (2013), 1, 5766-5774.

    [35]Yun Jeong Hwang, Akram Boukai, and Peidong Yang, High Density n-Si/n-TiO2 Core/Shell Nanowire Arrays with Enhanced Photoactivity, NANO LETTERS (2009), 9, 1, 410–415.

    [36]Jian Shi, Yukihiro Hara, Chengliang Sun, Marc A. Anderson, and Xudong Wang, Three-Dimensional High-Density Hierarchical Nanowire Architecture for High-Performance Photoelectrochemical Electrodes, Nano Lett., (2011), 11, 3413 – 3419.

    [37] Jian Shi and Xudong Wang, Hierarchical TiO2–Si nanowire architecture with photoelectrochemical activity under visible light illumination, Energy Environ. Sci., (2012), 5, 7918.

    [38] Jun Hong Noh, Bo Ding, Hyun Soo Han, Ju Seong Kim, Jong Hoon Park et al., Tin doped indium oxide core—TiO2 shell nanowires on stainless steel mesh for flexible photoelectrochemical cells,Appl. Phys. Lett., (2012), 100, 084104.

    [39]BSun Young Noh, Ke Sun, Chulmin Choi, Mutong Niu, Muchuan Yang, Ke Xu, Sungho Jin, Deli Wang, Branched TiO2/Si nanostructures for enhanced photoelectrochemical water splitting, Nano Energy, (2013), 2, 3, 351–360.

    [40] Li, Y., Qian, F., Xiang, J., Lieber, Nanowire electronic and optoelectronic devices, C. M. Mater. Today, (2006), 9, 18–27.

    [41]B. M. Kayes, H. A. Atwatera, and N. S. Lewis, Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells, J. Appl. Phys., (2005), 97, 114302.

    [42] Tian, B. Z.; Zheng, X. L.; Kempa, T. J.; Fang, Y.; Yu, N. F.; Yu,G. H.; Huang, J. L.; Lieber, C. M., Coaxial silicon nanowires as solar cells and nanoelectronic power sources, Nature, (2007), 449, 885–889.

    [43] Shannon W. Boettcher , Emily L. Warren Harry A. Atwater , and Nathan S. Lewis ,et.al., Photoelectrochemical Hydrogen Evolution Using Si Microwire Arrays, J. Am. Chem. Soc., (2011), 133,5, 1216–1219.

    [44] C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, Y. Cui ,High-performance lithium battery anodes using silicon nanowires ,Nature Nanotech., (2008), 3, 31-35.

    [45] Mingyuan Ge, Jiepeng Rong, Xin Fang, and Chongwu Zhou, Porous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life, Nano Lett., (2012), 12, 5, 2318–2323.

    [46] Vlad, A.; Reddy, A. L. M.; Ajayan, A.; Singh, N.; Gohy, J.-F.;Melinte, S.; Ajayan, P. M. Proc. , Roll up nanowire battery from silicon chips, Natl. Acad. Sci. U.S.A., (2012), 109 ,38, 15168–15173.

    [47]Kuiqing Peng, Juejun Hu, Jing Zhu et.al., Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles.,Adv funct. Mate., (2006), 16, 387–394.

    [48]Bechelany Mickhel, Berodier Elise, et.al., New silicon Architectures by Gold-Assisted Chemical Etching, ACS appl mater. Interfaces., (2011),3 , 3866-3873.

    [49]C. H. John, R. P. V. Duyen, Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces., J. Vac. Sci. Technol. A, (1995), 13, 1553.

    [50]Zhipeng Huang, Hui Fang, and Jing Zhu, Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density, Adv. Mater., (2007), 19, 744–748.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE