簡易檢索 / 詳目顯示

研究生: 鄭文源
Chan, Wen Yuan
論文名稱: 掃描穿隧能譜術於鉛超薄膜的電子結構之研究
Scanning Tunneling Spectroscopy Studies on Electronic Structures of Ultra-Thin Pb Films
指導教授: 吳茂昆
Wu, Maw Kuen
蘇維彬
Su, Wei Bin
口試委員: 張嘉升
Chang, Chia Seng
唐述中
Tang, Shu Jung
馬遠榮
Ma, Yuan Ron
蘇維彬
Su, Wei Bin
吳茂昆
Wu, Maw Kuen
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 96
中文關鍵詞: 掃描穿隧能譜術薄膜電子結構量子井態膨脹效應電場色散關係未填滿能態相面
外文關鍵詞: Scanning Tunneling Spectroscopy, Thin Film, Electronic Structure, Quantum Well State, Expansion Effect, Electric Field, Dispersion Relation, Unoccupied State, Phase
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們利用掃描穿隧顯微鏡及其能譜術來探測成長於銅(111)及矽(111)面上超薄鉛膜的電子結構。鉛在銅(111)上這個系統,我們觀察到不同厚度的鉛島所形成的未填滿量子井態,並藉由相位累加模型分析量子井態可獲得一組能量對應波向量的色散關係。發現這組實驗上能量對應波向量的色散關係可對應於鉛塊材的能帶結構,而且沿著Γ-L方向在費米能階以上會呈現出線性關係。接著我們使用這組線性色散來計算相鄰量子井態之間的能量差。在薄膜厚度八個原子層以下,能量的計算差值會和實驗量測上所得的實驗差值不太一致。這表示鉛膜厚度要到八個原子層以上,其電子結構才會顯現出跟塊材的一樣。

    因為使用掃描穿隧能譜術探測量子井態,其能量不可避免會受到探針與樣品間電場的影響。因此我們針對銅(111)面上鉛島裡面的未填滿量子井態,量測處於不同電場下其能量的偏移。隨著電場增加,發現對大部分的量子井態而言,其能量也會隨著偏移,偏移的行為還可以被歸類為兩種模式。第一種是量子井態的能量就只會單方向往高能量偏移。第二種模式卻不然,它一開始會先往低能量然後再轉為往較高能量的方向偏移。並且觀察到處於較高能量的量子井態其偏移行為較傾向第一種模式,不過隨著鉛島加厚其模式會逐漸轉變為第二種。此厚度相依的行為也反映出由於電場效應引發鉛島中存在著局部膨脹,而且更厚的鉛島膨脹量的更大。因此,量子井態可用於研究奈米尺度下的局部晶格變形。

    在鉛於矽(111)的系統,我們集中在觀察密集堆積的鉛覆蓋層的未填滿能態。隨著覆蓋率的微量增加,此系統已知會出現多種相面的原子排列結構在鉛覆蓋層裡。我們的穿隧能譜術觀察顯示所有相面的電子結構,都會出現兩個明顯共振譜峰的振盪特徵。一般來說密集堆積的鉛覆蓋層的覆蓋率,依相面而定是處於1.2到1.3單層的範圍。我們在不同相面上量測共振峰之間的能量差。結果顯示能量差值會隨著覆蓋率增加而減少。這個減少的能量差是來自於隨著覆蓋率增加,高能量譜峰會往較低能量移動。此外我們也發現了√7×√3 這個相面的能量差跟1×1 的幾乎一樣,隱含著這兩個相面的覆蓋率其實是完全相同的。


    We explore the electronic structures of the Pb ultra-thin films grown on the Cu(111) and Si(111) surfaces using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). For Pb/Cu(111) system, empty quantum well (QW) states in Pb islands of different thickness are observed, and analyzed with the phase accumulation model to obtain a dispersion of energy (E) versus wave vector (k). The E-k dispersion reveals a linear relationship corresponding to the Pb bulk band structure along -L direction above the Fermi level. We use this linear dispersion to calculate the energy spacing between adjacent empty QW states. The calculated values of energy spacing of island thickness below eight atomic layers are not in agreement with the experimental measurements. This implies that the electronic structure of Pb films would be similar to that of the bulk when their thicknesses reach eight atomic layers.

    Since the empty QW states are detected by STS, their energies are inevitable affected by the electric field in the STM gap. We measure the energy shift of empty QW states in Pb islands on Cu(111) at different electric field. It is found that, with an increase of the electric field, the behavior of the energy shift can be grouped into two different modes for most QW states. In the first mode, the state energy moves toward high energy monotonically. In the second mode, the state energy shifts to a lower energy initially and then turns around to a higher energy. Moreover, we have observed that the QW states of higher energy behave in preference to the first mode, but they gradually change to the second mode as the Pb island becomes thicker. This thickness-dependent behavior reflects the existence of local expansion in the Pb islands, due to the electric field, and that the expansion is larger for a thicker island. The QW states can thus be used for studying the localized lattice deformation in the nanometer scale.

    For Pb/Si(111) system, we focus on observing unoccupied states of dense Pb overlayer with various phases. Our observations show that there appears to be an oscillatory feature with two distinct resonance peaks in tunneling spectra of all phases. It is known that the coverage of dense Pb overlayer, depending on the phase, is within the range of 1.2-1.3 monolayer. Our measurements reveal that the spacing decreases with the increment of coverage. The reduction of the energy spacing is attributed to the movement of high-energy peak toward lower energy with increasing the coverage. Moreover, the energy spacing of √7×√3 phase is nearly the same as that of 1×1 phase, implying that the coverage is identical for both phases.

    Abstract iii Contents Vii List of Figures Xi 1. Introduction 1 2. Principles of Scanning Tunneling Microscopy and Spectroscopy 8 2.1 STM 8 2.1.1 Introduction 8 2.1.2 The Tunneling Process 9 2.1.3 The Tunneling Current 11 2.1.4 Constant-Current Imaging 12 2.2 STS 15 2.2.1 Introduction 15 2.2.2 Current-Voltage (I-V) 15 2.2.3 Distance-Voltage (Z-V) 17 3. Instrumentation 20 3.1 4.3 K STM 20 3.2 109 K STM 22 4. Quantum Well States 24 4.1 Phase Accumulation Model 26 4.2 Ultra-Thin Metallic Films: Confinement by A Relative Gap 30 5. Pb Bulk Band Structure Derived from Quantum Well States in Pb thin film 35 5.1 Introduction 35 5.2 Experimental Details 37 5.3 Results and Discussion 39 5.3.1 Quantum Well States in Pb Islands on Cu(111) 39 5.3.2 Calculation of State Energy Using the Parabolic E-k Dispersion 42 5.3.3 The Experimental Dispersions of Energy versus Wave Vector 45 5.3.4 Quantitatively Determine the Thickness of Pb Film Similar to Bulk 48 5.4 Conclusions 50 6. Field-Induced Expansion Deformation in Pb Islands on Cu(111): Evidence from Energy Shift of Empty Quantum-Well States 54 6.1 Introduction 54 6.2 Experimental Details 59 6.3 Results and Discussion 60 6.3.1 First Mode: State Energies Move toward Higher Energy 60 6.3.2 Second Mode: State Energies Move downward Initially and Then Upward 62 6.3.3 Distribution of Energy Shift Modes 64 6.3.4 Field-Induced Expansion Deformation 65 6.4 Conclusions 71 7. Phase-Sensitive Oscillatory Unoccupied States of Dense Pb Overlayer on Si(111) 74 7.1 Introduction 74 7.2 Experimental Details 79 7.3 Results and Discussion 82 7.3.1 Phases at Room Temperature 82 7.3.2 Two Resonance Peaks in Oscillatory Density of States 84 7.3.3 Phase-Sensitive Energy Spacing between Resonance Peaks 86 7.3.4 Coverage of √7×√3 Phase: the Same as Coverage of 1×1 Phase 90 7.4 Conclusions 93 Appendix Definitions of Acronyms 96

    Chapter 1:
    [1] D. Schumacher, Springer Tracts in Modern Physics (Springer, New York 1975), Vol. 128, p.1.
    [2] J. Unguris, R. J. Celotta, and D. T. Pierce, Phys. Rev. Lett. 67, 140 (1991).
    [3] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Feim, Phys. Rev. Lett. 97, 187401 (2006).
    [4] R. C. Jaklevic, John Lambe, M. Mikkor, and W. C. Vassell, Phys. Rev. Lett. 26, 88 (1971).
    [5] R. C. Jaklevic and John Lambe, Phys. Rev. B 12, 4146 (1975).
    [6] P. D. Loly, and J. B. Pendry, J. Phys. C 16, 423 (1983).
    [7] A. L. Wachs, A. P. Shapiro, T. C. Hsieh, and T.-C. Chiang, Phys. Rev. B 33, 1460 (1986).
    [8] R. Otero, A. L. Vázquez de Parga, and R. Miranda, Phys. Rev. B 66, 115401 (2002).
    [9] B. J. Jonker, N. C. Bartelt, and R. L. Park, Surf. Sci. 127, 183 (1983).
    [10] M. Jałochowski, H. Knoppe, G. Lilienkamp, and E. Bauer, Phys. Rev. B 46, 4693 (1992).
    [11] T.-C. Chiang, Surf. Sci. Rep. 39, 181 (2000).
    [12] D. A. Evans, M. Alonso, R. Cimino, and K. Horn, Phys. Lett. Rev. 70, 3483 (1993).
    [13] J. J. Paggel, T. Miller, and T.-C. Chiang, Science 283, 1709 (1999).
    [14] R. K. Kawakami, E. Rotenberg, H. J. Choi, E. J. Escorcia-Aparico, M. O. Bowen, J. H. Wolfe, E. Arenholz, Z. D. Zhang, N. V. Smith, and Z. Q. Qiu, Nature 398, 132 (1999).
    [15] A. Mans, J. H. Dil, A. R. H. F. Ettema, and H. H. Weitering, Phys. Rev. B 66, 195410 (2002).
    [16] Y. F. Zhang, J. F. Jia, T. Z. Han, Z. Tang, Q. T. Shen, Y. Guo, Z. Q. Qiu, and Q. K. Xue, Phys. Rev. Lett. 95, 096802 (2005).
    [17] G. Binnig and H. Rohrer, Rev. Mod. Phys. 59, 615 (1987).
    [18] F. K. Schulte, Surf. Sci. 55, 427 (1976).
    [19] C. Marliere, Vacuum 41, 1192 (1990).
    [20] M. Jałochowski and E. Bauer, Phys. Rev. B 38, 5272 (1988).
    [21] T. Miller, A. Samsavar, G. E. Franklin, and T.-C. Chiang, Phys. Rev. Lett. 61, 1404 (1988).
    [22] W. B. Su, S. H. Chang, W. B. Jian, C. S. Chang, L. J. Chen, and T. T. Tsong, Phys. Rev. Lett. 86, 5116 (2001).
    [23] B. J. Hinch, C. Koziol, J. P. Toennies, and G. Zhand, Europhys. Lett. 10, 341 (1989).
    [24] A. Crottini, D. Cvetko, L. Floreano, R. Gotter, A. Morgante, and F. Tommasini, Phys. Rev. Lett. 79, 1527 (1997).
    [25] D. A. Luh, T. Miller, J. J. Paggel, M. Y. Chou, and T. C. Chiang, Science 292, 1131 (2001).
    [26] Y. Guo et al , Science 306, 1915 (2004).
    [27] D. Eom, S. Qin, M. Y. Chou, and C. K. Shih, Phys. Rev. Lett. 96, 027005 (2006).
    [28] T. L. Chan, C. Z. Wang, M. Hupalo, M. C. Tringides, and K. M. Ho, Phys. Rev. Lett. 96, 226102 (2006).
    [29] L. Y. Ma et al, Phys. Rev. Lett. 97, 266102 (2006).
    [30] C. A. Jeffrey, E. H. Conrad, R. Feng, M. Hupalo, C. Kim, P. J. Ryan, P. F. Miceli, and M. C. Tringides, Phys. Rev. Lett. 96, 106105 (2006).
    [31] Y. S. Fu et al, Phys. Rev. Lett. 99, 256601 (2007).
    [32] H. Y. Lin, Y. P. Chiu, L. W. Huang, Y. W. Chen, T. Y. Fu, C. S. Chang, and T. T. Tsong, Phys. Rev. Lett. 94, 136101 (2005).
    [33] Y. F. Zhang, Z. Tang, T. Z. Han, X. Ma, J. F. Jia, Q. K. Xue, K. Xun, and S. C. Wu, Appl. Phys. Lett. 90, 093120 (2007).
    [34] S.-J. Tang, Chang-Yeh Lee, Chien-Chung Huang, Tay-Rong Chang, Cheng-Maw Cheng, Ku-Ding Tsuei, H.-T. Jeng, V. Yeh, and Tai-Chang Chiang, Phys. Rev. Lett. 107, 066802 (2011).

    Chapter 2:
    [1] Scanning Tunneling Microscopy and Spectroscopy: Theory, Techniques, and Applications, edited by D. A. Bonnell (VCH, New York, 1993).
    [2] J. Tersoff and D. R. Hamann, Phys. Rev. B 31, 805 (1985).
    [3] N. Klipa and M. Šunjić, Phys. Rev. B 52, 12408 (1995).
    [4] D. Šestović and M. Šunjić, Solid State Commun. 98, 375 (1996).
    [5] D. Sestovic-acute, L. Marusic-acute, and M. Sunjic-acute, Phys. Rev. B 55, 1741 (1997).
    [6] F. Besenbacher, Reg. Prog. Phys. 59, 1737 (1996).
    [7] G.A.D. Briggs and A.J. Fisher, Surf. Sci. Rep. 33, 1 (1999).
    [8] D Drakova, Reg. Prog. Phys.64, 205 (2001).
    [9] J. Tersoff and D. R. Hamann, Phys. Rev. L 50, 1998 (1983).
    [10] D. A. Bonnell, Trans. Am. Cer: Soc. (1988).
    [11] R. V. Coleman, B. Giambattista, P. K. Hansma, A. Johnson, W. W. McNairy, and C. G. Slough, Adv. Phys. 37, 559 (1988).
    [12] C. J. Chan, Introduction to Scanning Tunneling Microscopy, 2rd (Oxford University, New York, 2007).
    [13] J. Simmons, J. Appl. Phys. 34, 1793 (1963).
    [14] G. Binnig, K. H. Frank, H. Fuchs, N. Garcia, B. Reihl, H. Rohrer, F. Salvan, and A. R. Williams, Phys. Rev. Lett. 55, 991 (1985).
    [15] M. C. Yang, C. L. Lin, W. B. Su, S. P. Lin, S. M. Lu, H.Y. Lin, C. S. Chang, W. K. Hsu, and T. T. Tsong, Phys. Rev. Lett. 102, 196102 (2009).
    [16] S. Ogawa, S. Heike, H. Takahashi, and T. Hashizume, Phys. Rev. B 75, 115319 (2007).

    Chapter 4:
    [1] P. M. Echenique, J. B. Pendry, J. Phys. C 11, 2065 (1978).
    [2] W. Shockley, Phys. Rev. 56, 317 (1939).
    [3] P. M. Echenique and J. B. Pendry, J. Phys. C: Solid State Phys. 11, 2065 (1978).
    [4] N. V. Smith and C. T. Chen, Surf. Sci. 247, 133 (1991).
    [5] T.-C. Chiang, Surf. Sci. Rep. 39, 181 (2000).
    [6] N. V. Smith and D. P. Woodruff, Prog. Surf. Sci. 21, 295 (1986).
    [7] R. Otero, A. L. Vázquez de Parga, and R. Miranda, Surf. Sci. 447, 143 (2000).
    [8] M. C. Yang, C. L. Lin, W. B. Su, S. P. Lin, S. M. Lu, H.Y. Lin, C. S. Chang, W. K. Hsu, and T. T. Tsong, Phys. Rev. Lett. 102, 196102 (2009).
    [9] N. V. Smith, Phys. Rev. B 32, 3549 (1985).
    [10] T. Miller, A. Samsavar, G. E. Franklin, and T. C. Chiang, Phys. Rev. Lett. 61, 1404 (1988).
    [11] M. Milun, P. Pervan, and D. P. Woodruff, Rep. Prog. Phys. 65, 99 (2002)

    Chapter 5:
    [1] D. A. Evans, M. Alonso, R. Cimino, and K. Horn, Phys. Rev. Lett. 70, 3483 (1993).
    [2] J. J. Paggel, T. Miller, and T.-C. Chiang, Science 283, 1709 (1999).
    [3] R. K. Kawakami, E. Rotenberg, H. J. Choi, E. J. Escorcia-Aparico, M. O. Bowen, J. H. Wolfe, E. Arenholz, Z. D. Zhang, N. V. Smith, and Z. Q. Qiu, Nature 398, 132 (1999).
    [4] A. Mans, J. H. Dil, A. R. H. F. Ettema, and H. H. Weitering, Phys. Rev. B 66, 195410 (2002).
    [5] Y. F. Zhang, J. F. Jia, T. Z. Han, Z. Tang, Q. T. Shen, Y. Guo, Z. Q. Qiu, and Q. K. Xue, Phys. Rev. Lett. 95, 096802 (2005).
    [6] I. B. Altfeder, K. A. Matveev and D. M. Chen, Phys. Rev. Lett. 78, 2815 (1997).
    [7] W. B. Su, S. H. Chang, W. B. Jian, C. S. Chang, L. J. Chen, and T. T. Tsong, Phys. Rev. Lett. 86, 5116 (2001).
    [8] G. Hoffmann, J. Kliewe,r and R. Berndt, Phys. Rev. Lett. 87, 176803 (2001).
    [9] I. B. Altfeder, V. Narayanamurti, and D. M. Chen, Phys. Rev. Lett. 88, 206801 (2002).
    [10] R. Otero, A. L. Vázquez de Parga, and R. Miranda, Phys. Rev. B 66, 115401 (2002).
    [11] D. Wegner, A. Bauer, and G. Kaindl, Phys. Rev. Lett. 94, 126804 (2005).
    [12] S. M. Lu, M. C. Yang, W. B. Su, C. L. Jiang, T. Hsu, C. S. Chang, and T. T. Tsong, Phys. Rev. B 75, 113402 (2007).
    [13] M. C. Yang, C. L. Lin, W. B. Su, S. P. Lin, S. M. Lu, H. Y. Lin, C. S. Chang, W. K. Hsu, and T. T. Tsong, Phys. Rev. Lett. 102, 196102 (2009).
    [14] W. B. Su, C. S. Chang, and T. T. Tsong, J. Phys. D Appl. Phys. 43, 013001 (2010).
    [15] A. R. Smith, K. J. Chao, Q. Niu, and C. K. Shih, Science 273, 226 (1996).
    [16] K. Budde, E. Abram, V. Yeh, and M. C. Tringides, Phys. Rev. B 61, R10602 (2000).
    [17] D. A. Luh, T. Miller, J. J. Paggel, M. Y. Chou, and T.-C. Chiang, Science 292, 1131 (2001).
    [18] A. Crottini, D. Cvetko, L. Floreano, R. Gotter, A. Morgante, and F. Tommasini, Phys. Rev. Lett. 79, 1527 (1997).
    [19] J. Kim, S. Y. Qin, W. Yao, Q. Niu, M. Y. Chou, and C. K. Shih, Proc. Natl. Acad. Sci. 107, 12761 (2010).
    [20] C. L. Lin, M. C. Yang, W. B. Su, S. P. Lin, S. M. Lu, H. Y. Lin, C. S. Chang, T. Y. Fu, and T. T. Tsong, Chin. J. Phys. 48, 855 (2010).
    [21] Y. Guo, Y. F. Zhang, X. Y. Bao, T. Z. Han, Z. Tang, L. X. Zhang, W. G. Zhu, E. G. Wang, Q. Niu, Z. Q. Qiu, J. F. Jia, Z. X. Zhao, and Q. K. Xue, Science 306, 1915 (2004).
    [22] D. Eom, S. Qin, M. Y. Chou, and C. K. Shih, Phys. Rev. Lett. 96, 027005 (2006).
    [23] Y. S. Fu, S. H. Ji, X. Chen, X. C. Ma, R. Wu, C. C. Wang, W. H. Duan, X. H. Qiu, B. Sun, P. Zhang, J. F. Jia, and Q. K. Xue, Phys. Rev. Lett. 99, 256601 (2007).
    [24] T. Uchihashi, J. Zhang, J. Kröger, and R. Berndt, Phys. Rev. B 78, 033402 (2008).
    [25] S. Ogawa, H. Nagano, and H. Petek, Phys. Rev. Lett. 88, 116801 (2002).
    [26] P. S. Kirchmann and U. Bovensiepen, Phys. Rev. B 78, 035437 (2008).
    [27] I. P. Hong, C. Brun, F. Patthey, I. Y. Sklyadneva, X. Zubizarreta, R. Heid, V. M. Silkin, P. M. Echenique, K. P. Bohnen, E. V. Chulkov, and W. D. Schneider, Phys. Rev. B 80, 081409(R) (2009).
    [28] M. Becker and R. Berndt, Phys. Rev. B 81, 205438 (2010).
    [29] S. M. Lu, W. B. Su, C. L. Lin, W. Y. Chan, H. L. Hsiao, C. S. Chang, and T. T. Tsong, J. Appl. Phys. 108, 083707 (2010).
    [30] C. C. Hsu, W. H. Lin, Y. S. Ou, W. B. Su, C. S. Chang, C. I. Wu, and T. T. Tsong, Surf. Sci. 604, 1 (2010).
    [31] R. Otero, A. L. Vázquez de Parga, and R. Miranda, Surf. Sci. 447, 143 (2000).
    [32] R. C. Jaklevic and J. Lambe, Phys. Rev. B 12, 4146 (1975).
    [33] K. Horn, B. Riehl, A. Zartner, D. E. Eastman, K. Hermann, and J. Noffke, Phys. Rev. B 30, 1711 (1984).
    [34] P. M. Echenique and J. B. Pendry, J. Phys. C 11, 2065 (1978).
    [35] N. V. Smith, Phys. Rev. B 32, 3549 (1985).
    [36] M. Jalochowski and E. Bauer, Phys. Rev. B 38, 5272 (1988).
    [37] W. B. Su, S. M. Lu, C. S. Chang, and T. T. Tsong, Phys. Rev. Lett. 106, 249602 (2011).
    [38] A. Zugarramurdi, N. Zabala, A. G. Borisov, and E. V. Chulkov, Phys. Rev. Lett. 106, 249601 (2011).
    [39] S. Ogawa, S. Heike, H. Takahashi, and T. Hashizume, Phys. Rev. B 75, (2007) 115319.
    [40] W. Y. Chan, H. S. Huang, W. B. Su, W. H. Lin, H.-T. Jeng, M. K. Wu, and C. S. Chang, Phys. Rev. Lett. 108, 146102 (2012).

    Chapter 6:
    [1] G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57 (1982).
    [2] L. Limot, T. Maroutian, P. Johansson, and R. Berndt, Phys. Rev. Lett. 91, 196801 (2003).
    [3] F. Reinert, G. Nicolay, S. Schmidt, D. Ehm, and S. Hüfner, Phys. Rev. B 63, 115415 (2001).
    [4] W. F. Chung, Y. J. Feng, H. C. Poon, C. T. Chan, S. Y. Tong, and M. S. Altman, Phys. Rev. Lett. 90, 216105 (2003).
    [5] W. B. Su, S. M. Lu, C. L. Jiang, H. T. Shih, C. S. Chang, and T. T. Tsong, Phys. Rev. B 74, 155330 (2006).
    [6] I. W. Lyo and P. Avouris, Science 253, 173 (1991).
    [7] L. J. Whitman, J. A. Stroscio, R. A. Dragoset and R. J. Celotta, Science 251, 1206 (1991).
    [8] J. A. Stroscio and D. M. Eigler, Science 254, 1319 (1991).
    [9] H. J. Mamin, P. H. Guethner, and D. Rugar, Phys. Rev. Lett. 65, 2418 (1990).
    [10] C. S. Chang, W. B. Su, and T. T. Tsong, Phys. Rev. Lett. 72, 574 (1994).
    [11] D. A. Evans, M. Alonso, R. Cimino, and K. Horn, Phys. Rev. Lett. 70, 3483 (1993).
    [12] J. J. Paggel, T. Miller, and T.-C. Chiang, Science 283, 1709 (1999).
    [13] I. B. Altfeder, K. A. Matveev, and D. M. Chen, Phys. Rev. Lett. 78, 2815 (1997).
    [14] W. B. Su, S. H. Chang, W. B. Jian, C. S. Chang, L. J. Chen, and T. T. Tsong, Phys. Rev. Lett. 86, 5116 (2001).
    [15] G. Hoffmann, J. Kliewer, and R. Berndt, Phys. Rev. Lett. 87 176803 (2001).
    [16] R. Otero, A. L. Vázquez de Parga, and R. Miranda, Phys. Rev. B 66, 115401 (2002).
    [17] D. Wegner, A. Bauer, and G. Kaindl, Phys. Rev. Lett. 94, 126804 (2005).
    [18] S. M. Lu, M. C. Yang, W. B. Su, C. L. Jiang, T. Hsu, C. S. Chang, and T. T. Tsong, Phys. Rev. B 75, 113402 (2007).
    [19] M. Becker and R. Berndt, Phys. Rev. B 81, 205438 (2010).
    [20] C. C. Hsu, W. H. Lin, Y. S. Ou, W. B. Su, C. S. Chang, C. I. Wu, and T. T. Tsong Surf. Sci. 604, 1 (2010).
    [21] S. Ogawa, S. Heike, H. Takahashi, and T. Hashizume, Phys. Rev. B 75, 115319 (2007).
    [22] R. Otero, A. L. Vázquez de Parga, and R. Miranda, Surf. Sci. 447, 143 (2000).
    [23] M. C. Yang, C. L. Lin, W. B. Su, S. P. Lin, S. M. Lu, H.Y. Lin, C. S. Chang, W. K. Hsu, and T. T. Tsong, Phys. Rev. Lett. 102, 196102 (2009).
    [24] P. M. Echenique and J. B. Pendry, J. Phys. C 11, 2065 (1978).
    [25] N. V. Smith, Phys. Rev. B 32, 3549 (1985).
    [26] W. B. Su, S. M. Lu, C. S. Chang, and Tien T. Tsong, Phys. Rev. Lett. 106, 249602 (2011).
    [27] W. Y. Chan, H. S. Huang, W. B. Su, G. Hoffmann, S. M. Lu, C. S. Chang, M. K. Wu, and T. T. Tsong, Chin. J. Phys. (submitted).
    [28] A. Zugarramurdi, N. Zabala, A. G. Borisov, and E. V. Chulkov, Phys. Rev. B 84, 115422 (2011).

    Chapter 7:
    [1] E. Ganz, F. Xiong, I.-S. Hwang, and J. Golovchenko, Phys. Rev. B 43, 7316 (1991).
    [2] E. Ganz, I.-S. Hwang, F. Xiong, K. Silva Theiss, and J. Golovchenko, Surf. Sci. 257, 259 (1991).
    [3] L. Seehofer, G. Falkenberg, D. Daboul, and R. L. Johnson, Phys. Rev. B 51, 13503 (1995).
    [4] K. Horikoshi, X. Tong, T. Nagao, and S. Hasegawa, Phys. Rev. B 60, 13287 (1999).
    [5] M. Hupalo, J. Schmalian, and M. C. Tringides, Phys. Rev. Lett. 90, 216106 (2003).
    [6] J. Slezak, P. Mutombo, and V. Chab, Phys. Rev. B 60, 13328 (1999).
    [7] C. Kumpf, O. Bunk, J. H. Zeysing, M. M. Nielsen, M. Nielsen, R. L. Johnson, and R. Feidenhans’l, Surf. Sci. 448, L213 (2000).
    [8] O. Custance, J. M. Gomez-Rodriguez, A. M. Baro, L. Jure, P. Mallet, and J. Y. Veuillen, Surf. Sci. 482, 1399 (2001).
    [9] I. Brihuega, O. Custance, Rubén Pérez, and J. M. Gómez-Rodríguez, Phys. Rev. Lett. 94, 046101 (2005).
    [10] I.-S. Hwang, S. H. Chang, C. K. Fang, L. J. Chen, and T. T. Tsong, Phys. Rev. Lett. 93, 106101 (2004).
    [11] B. Ressel, J. Slezák, K. C. Prince, and V. Cháb, Phys. Rev. B 66, 035325 (2002).
    [12] W. H. Choi, H. Koh, E. Rotenberg, and H. W. Yeom, Phys. Rev. B 75, 075329 (2007).
    [13] T. Zhang, P. Cheng, W. J. Li, Y. J. Sun, G. Wang, X. G. Zhu, K. He, L. Wang, X. Ma, X. Chen, Y. Wang, Y. Liu, H. Q. Lin, J. F. Jia, and Q. K. Xue, Nat. Phys. 6, 104 (2010).
    [14] M. Švec, V. Cháb, and M. C. Tringides, J. Appl. Phys. 106 053501 (2009).
    [15] G. Binnig, K. H. Frank, H. Fuchs, N. Garcia, B. Reihl, H. Rohrer, F. Salvan, and A. R. Williams, Phys. Rev. Lett. 55 991 (1985).
    [16] R. S. Becker, J. A. Golovchenko, and B. S. Swartzentruber, Phys. Rev. Lett. 55 987 (1985).
    [17] M. C. Yang, C. L. Lin, W. B. Su, S. P. Lin, S. M. Lu, H. Y. Lin, C. S. Chang, W. K. Hsu, and T. T. Tsong, Phys. Rev. Lett. 102 196102 (2009).
    [18] S. M. Lu, W. B. Su, C. L. Lin, W. Y. Chan, H. L. Hsiao, C. S. Chang, and T. T. Tsong, J. Appl. Phys. 108 083707 (2010).
    [19] I. B. Altfeder, K. A. Matveev, and D. M. Chen, Phys. Rev. Lett. 78, 2815 (1997).
    [20] W. B. Su, S. H. Chang, W. B. Jian, C. S. Chang, L. J. Chen, and T. T. Tsong, Phys. Rev. Lett. 86, 5116 (2001).
    [21] I. B. Altfeder, V. Narayanamurti, and D. M. Chen, Phys. Rev. Lett. 88, 206801 (2002).
    [22] S. M. Lu, M. C. Yang, W. B. Su, C. L. Jiang, T. Hsu, C. S. Chang, and T. T. Tsong, Phys. Rev. B 75, 113402 (2007).
    [23] S. Stepanovsky, M. Yakes, V. Yeh, M. Hupalo, and M. C. Tringides, Surf. Sci. 600, 1417 (2006).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE