研究生: |
劉哲銘 Liu, Jhe-Ming |
---|---|
論文名稱: |
具驅動-充電-放電功能電動車輛用切換式磁阻馬達驅動系統之開發 DEVELOPMENT OF A SWITCHED-RELUCTANCE MOTOR DRIVE FOR ELECTRIC VEHICLES WITH DRIVING-CHARGING-DISCHARGING FUNCTIONS |
指導教授: |
廖聰明
Liaw, Chang-Ming |
口試委員: |
劉添華
Liu, Tian-Hua 陳盛基 Chen, Seng-Chi |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 123 |
中文關鍵詞: | 蓄電池 、切換式整流器 、車上充電器 、電流控制 、速度控制 、數位信號處理器 、功率因數矯正 、變頻器 、單相三線式 、不斷電電源供應器 、緊急電源 |
外文關鍵詞: | battery, switch-mode rectifier, on-board charger, current control, speed control, digital signal processor, power factor correction, inverter, single-phase three-wire, uninterruptable power supply, emergency source |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在開發一用於電動車之蓄電池供電切換式磁阻馬達驅動系統,具馬達驅動、充電及放電功能。使用兩個三相智慧型功率模組建構一非對稱橋式轉換器及一雙象限前端直流/直流轉換器,藉由適當之控制安排以獲得馬達驅動系統良好之線圈電流及速度動態響應特性。此外,並應用換相前移及直流鏈電壓升壓技巧以提升馬達於高速下之驅控性能。
當車輛處於閒置狀態,所開發之馬達驅動系統可安排操作於充電模式,利用馬達驅動系統之固有組成元件,建構形成一以降壓型切換式整流器為主之車上充電器,只需安插入電源插頭即可由市電對電池充電,並由所發展之簡易強健控制機構獲得具良好交流入電品質之優良充電性能。
最後於放電模式,亦可由馬達驅動系統之內具元件組接形成一單相三線式變頻器,由車輛蓄電池轉換產出60Hz 220/110V 交流緊急電源。所提之單相三線式變頻器由一全橋四開關轉換器及一電容中性臂組成,其直流鏈電壓由升壓直流/直流前端轉換器由蓄電池建立。此外,所開發之切換式磁阻馬達驅動系統之蓄電池或升壓之直流鏈亦可介接至直流微電網提供儲存之電能。所建構系統之所有電力級控制法則均由一共同之數位信號處理器實現,並提供一些模擬及實測結果以評估其操作特性。
This thesis presents the development of a battery powered switched-reluctance motor (SRM) drive for electric vehicles (EVs) having driving, charging and discharging functions. Two three-phase intelligent power modules (IPMs) are used to form the SRM asymmetric bridge converter and the two-quadrant front-end DC/DC converter. Through proper control arrangement, good winding current and speed dynamic responses in driving mode are preserved. In addition, the commutation advanced shift and the voltage boosting by front-end converter are applied to enhance the driving performance under higher speed.
In idle condition, the developed motor drive can be operated in charging mode, an on-board buck switching-mode rectifier (SMR) based charger is constructed using the constituted components of the motor drive. Only the insertion of power cord is needed to charge the battery from the mains. The simple robust control scheme is developed to yield good charging performance with satisfactory line drawn power quality.
Finally in discharging mode, a single-phase three-wire (1P3W) inverter is arranged using the embedded motor drive system components. The 60Hz 220/110V AC emergency sources are generated from the vehicle battery. The developed inverter consists of an H-bridge 4-switch converter and a capacitor center-leg. Its DC-link voltage is established from the battery via the front-end boost DC-DC converter. In addition, the battery or the voltage boosted DC-link in the developed SRM drive can also be interfaced to the DC microgrid for providing the energy storage support. All the control algorithms of the developed power stages are realized using a single digital signal processor (DSP). Some simulated and experimental results are provided to evaluate their operating characteristics.
A. Green Energy and Electric Vehicles
[1]G. M. Masters, Renewable and efficient electric power systems, Wiley-Interscience, New Jersey, 2004.
[2]M. Hashem Nehrir and Caisheng Wang, Modeling and control of fuel cells, IEEE Press, New Jork, 2009.
[3]J. Arai, K. Iba, T. Funabashi, Y. Nakanishi, K. Koyanagi and R. Yokoyama, “Power electronics and its applications to renewable energy in Japan,” IEEE Circuits Syst. Mag., vol. 8, no. 3, pp. 52-66, 2008.
[4]Y. C. Chang and C. M. Liaw, “Establishment of a switched-reluctance generator based common DC micro-grid system,” IEEE Trans. Power Electron., 2011.
[5]J. Mitra and S. Suryanarayanan, “System analytics for smart microgrids,” IEEE Power and Eng. Soc. General Meeting, pp. 1-4, 2010.
[6]D. Boroyevich, I. Cvetkovic, D. Dong, R. Burgos, F. Wang and F.C. Lee, “Future electronic power distribution systems a contemplative view,” IEEE OPTIM, 2010, pp.1369-1380.
[7]A. Emadi, K. Rajashekara, S. S. Williamson and S. M. Lukic, “Topological overview of hybrid electric and fuel cell vehicular power system architectures and configurations,” IEEE Trans. Veh. Technol., vol. 54, no. 2, pp. 736-770, 2005.
[8]Gao Yimin and M. Ehsani. “Design and Control Methodology of plug-in hybrid electric vehicles,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 633-640, 2010.
[9]R. Ghorbani, E. Bibeau and S. Filizadeh, “On conversion of hybrid electric vehicles to plug-in,” IEEE Trans. Veh. Technol., vol. 59, no. 4, pp. 2016-2020, 2010.
[10]S. G. Wirasingha and A. Emadi “Classification and review of control strategies for plug-in hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 111-122, 2011.
[11]B. Kramer, S. Chakraborty and B. Kroposki, “A review of plug-in vehicles and vehicle-to-grid capability,” IEEE Trans. Ind. Electron., pp. 2278-2283, 2009.
[12]S. D. Jenkins, J. R. Rossmaier and M. Ferdowsi, “Utilization and effect of plug-in hybrid electric vehicles in the united states power grid,” in Proc. IEEE VPPC, 2008, pp. 1-5.
[13]E. Valsera-Narango, A. Sumper, P. Lloret-Gallego, R. Villafafila-Robles and A. Studria-Andreu, “Electrical vehicles: state of art and issues for their conncetion to the network,” in Proc. IEEE EPQU, 2009, pp. 1-3.
[14]M. C. Kisacikoglu, B. Ozpineci and L. M. Tolbert, “Effects of V2G reactive power compensation on the component selection in an EV or PHEV bidirectional charger,” in Proc. IEEE ECCE, 2010, pp. 870-876.
[15]H. Oyobe, M. Nakamura, T. Ishikawa, S. Sasaki, Y. Minezawa, Y. Watanabe and K. Asano, “Development of ultra low-cost, high-capacity power generation system using drive motor and inverter for hybrid vehicle,” in Proc. IEEE IAS, 2005, pp. 2029-2034.
B. Switched-Reluctance Motors and Their Applications
[16]T. J. E. Miller, Switched reluctance motors and their control, Clarendon Press, Oxford, 1993.
[17]R. Krishnan, Switched reluctance motor drives: modeling, simulation, analysis, design, and applications, New York: CRC Press, 2001.
[18]K. M. Rahman, B. Fahimi, G. Suresh, A. V. Rajarathnam and M. Ehsani, “Advantages of switched reluctance motor applications to EV and HEV: design and control issues,” IEEE Trans. Ind. Appl., vol. 36, no. 1, pp. 111-121, 2000.
[19]K. M. Rahman and S. E. Schulz, “Design of high efficiency and high density switched reluctance motor for vehicle propulsion,” in Proc. IEEE IAC, 2001, vol. 3, pp.2104-2110.
[20]R. B. Inderka, M. Menne and R. W. De Doncker, “Control of switched reluctance drives for electric vehicle applications,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 48-53, 2002.
[21]M. Krishnamurthy, C. S. Edrington, A. Emadi, P. Asadi, M. Ehsani and B. Fahimi, “Making the case for applications of switched reluctance motor technology in automotive products,” IEEE Trans. Power Electron., vol. 21, pp. 659-675, 2006.
[22]K. Asano, Y. Inaguma, H. Ohtani, E. Sato, M. Okamura and S. Sasaki, “High performance motor drive technologies for hybrid vehicles,” in Proc. PCC Conf., 2007, pp. 1584-1589.
[23]S. Kachapornkul, P. Jitkreeyarn, P. Somsiri, K. Tungpimolrut, A. Chiba and T. Fukao, “A design of 15 kW switched reluctance motor for electric vehicle applications,” in Proc. IEEE ICEMS, 2007, pp.1690-1693.
[24]A. Labak and N. C. Kar, “A novel five-phase pancake shaped switched reluctance motor for hybrid electric vehicles,” IEEE VPPC., vol. 17, no 6, 2009, pp. 1036-1317.
[25]H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage boosting and PFC charging charging capabilities,” IEEE Trans. Veh. Technol., vol. 58, no. 7,pp. 3198-3215, 2009.
[26]A. V. Radun, “Design considerations for the switched reluctance motor,” IEEE Trans. Ind. Appl., vol. 3, no. 5, pp. 1079-1087, 1995.
[27]T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 15-27, 2002.
C. Switched-Reluctance Motor Converters
[28]M. Barnes and C. Pollock, “Power electronic converters for switched reluctance drive,” IEEE Trans. Power Electron., vol. 13, pp.1100-1111, 1998.
[29]S. Mir, I. Husain and M.E. Elbuluk, “Energy-efficient C-dump converters for switched reluctance motors,” IEEE Trans. Power Electron., vol. 12, pp. 912-921, 1997.
[30]Y. H. Yoon, S. H. Song, T. W. Lee, C. Y. Won and Y. R. Kim, “High performance switched reluctance motor drive for automobiles using C-dump converters,” in Proc. IEEE ISIE, 2004, pp. 969-974.
[31]V. V. Deshpande and Y. L. Jun, “New converter configurations for switched reluctance motors wherein some windings operate on recovered energy,” IEEE Trans. Ind. Appl., vol. 38, no. 6, pp. 1558-1565, 2002.
[32]M. Cacciato, A. Consoli, G. Scarcella and G. Scelba, “A switched reluctance motor drive for home appliances with high power factor capability,” in Proc. IEEE PESC, 2008, pp. 1235-1241.
[33]J. Y. Chai and C.M. Liaw, “Development of a switched-reluctance motor drive with PFC front-end,” IEEE Trans. Energy Convers., vol. 19, no. 1, pp. 116-124, 2004.
[34]J. Y. Chai, Y. C. Chang and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, May 2010.
[35]J. Y. Chai, Development and control of a switched-reluctance motor drive with power factor correction front-end, Ph.D. Dissertation, Department of Electrical Engineering, National Tsing Hua University, R.O.C., 2008.
[36]S. Chan, “Performance enhancement of single-phase switched reluctance motor by DC link voltage boosting,” IEE Proc. Elect. Power Applicat., vol. 140, no. 5, pp. 316-322., 1993.
[37]D. H. Lee, S. H. Seok and J. W. Ahn, “SR drive for hydraulic pump using a novel passive boost converter,” in Proc. IEEE ECCE, 2009, pp. 282-287.
[38]K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” IEE Proc. Elect. Power Applicat., vol. 147, no. 5, pp. 337-344, 2000.
[39]FCAS50SN60 smart power module for SRM, www.fairchildsemi. com/ds/FC/FCAS50SN60.pdf
[40]FCAS20DN60BB smart power module for SRM, www.fairchildsemi. com/ds/FC/FCAS20DN60BB.pdf
[41]Y. C. Kim, Y. H. Yoon, B. K. Lee, J. Hur and C. Y. Won, “A new cost effective SRM drive using commercial 6-switch IGBT modules,” in Proc. IEEE PESC, 2006, pp. 1-7.
[42]Y. C. Kim, Y. H. Yoon, B. K. Lee, H. S. Kim and C. Y. Won, “Control algorithm for 4-switch converter of 3-phase SRM,” in Proc. PESC, 2006, pp. 1-5.
[43]A. C. Oliveira, C. B. Jacobina, A. M. N. Lima and F. Salvadori, “Startup and fault tolerance of the SRM drive with three-phase bridge inverter,” in Proc. IEEE PESC, 2005, pp. 714-719.
[44]H. Goto, H. J. Guo, O. Ichinokura, “A novel drive method for switched reluctance using three-phase power modules,” in Proc. EPE-PEMC, 2006, pp. 1027-1031.
[45]X. Liu and Z. Pan, “Study on switched reluctance motor using three-phase bridge inverter: Analysis and comparison with asymmetric bridge,” in Proc. ICEM, 2008, pp. 1354-1358.
[46]J. Peng, Z. Deng, X. Chen, Z. Liu, X. Wang, Y. Wu and J. Cai, “Dynamic analysis of switched reluctance motor in two different control strategies based on three-phase bridge converter,” in Proc. ASEMD, 2009, pp. 255-258.
[47]J. Liang, D. Lee, G. Xu, and J. Ahn, “Analysis of passive boost power converter for three-phase SR Drive,” IEEE Tran. Ind. Electron., vol. 57, no. 9, pp. 2961-2971, 2010.
D. Modeling and Dynamic Control
[48]N. J. Nagel and R. D. Lorenz, “Modeling of a saturated switched reluctance motor using an operating point analysis and the unsaturated torque equation,” IEEE Trans. Ind. Applicat., vol. 36, pp. 714-722, 2000.
[49]V. Vujicic and S.N. Vukosavic, “A simple nonlinear model of the switched reluctance motor,” IEEE Trans. Energy Convers., vol. 15, no. 4, pp. 395-400, 2000.
[50]B. P. Loop and S. D. Sudhoff, “Switched reluctance machine model using inverse inductance characterization,” IEEE Trans. Ind. Applicat., vol. 39, no. 3, pp. 743-751, 2003.
[51]D. N. Essah and S. D. Sudhoff, “An improved analytical model for the switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 349-356, 2003.
[52]B. C. Mecrow, C. Weiner and A. C. Clothier, “The modeling of switched reluctance machines with magnetically coupled windings,” IEEE Trans. Ind. Applicat., vol. 37, no. 6, pp. 1675-1683, 2001.
[53]F. R. Salmasi and B. Fahimi, “Modeling switched-reluctance machines by decomposition of double magnetic saliencies,” IEEE Trans. Magn., vol. 40, no. 3, pp. 1562-1572, 2004.
[54]S. A. Hussain and I. Husain, “Modeling, simulation and control of switched reluctance motor drives,” in Proc. IEEE IECON’03, 2003, vol. 3, pp. 2447-2452.
[55]K. N. Srinivas and R. Arumugam, “Dynamic characterization of switched reluctance motor by computer-aided design and electromagnetic transient simulation,” IEEE Trans. Magn., vol. 39, no. 3, pp.1806-1812, 2003.
[56]W. Lu, A. Keyhani and A. Fardoun, “Neural network-based modeling and parameter identification of switched reluctance motors,” IEEE Trans. Energy Convers., vol. 18, pp. 284-290, 2003.
[57]K. I. Hwu, Development of a switched-reluctance motor drive, Ph.D. Dissertation, Department of Electrical Engineering, National Tsing Hua University, R.O.C., 2001.
[58]H. K. Bae and R. Krishnan, “A study of current controllers and development of a novel current controller for high performance SRM drives,” in Proc. IEEE IAS, 1996, vol. 1, pp. 68-75.
[59]F. Blaabjerg, P. C. Kjaer, P. O. Rasmussen and C. Cossar, “Improved digital current control methods in switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 563-572, 1999.
[60]G.. Gallegos-Lopez and K. Rajashekara, “Peak PWM current control of switched reluctance and AC machines,” in Proc. Ind. Applicat. Conf., 2002, vol. 2, pp. 1212-1218.
[61]R. B. Inderka, M. Menne and A. W. Rik. “Control of switched reluctance drives for electric vehicle applications,” IEEE Trans. Ind. Electron., vol. 49, pp. 48-53, 2002.
[62]S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Applicat., vol. 39, no. 4, pp. 1118-1126, 2003.
[63]L. O. A. P. Henriques, P. J. C. Branco, L. G. B. Rolim and W. I. Suemitsu, “Proposition of an off line learning current modulation for torque-ripple reduction in switched reluctance motors: design and experimental evaluation,” IEEE Trans. Ind. Electron., vol. 49, no. 3, pp. 665-676, 2002.
[64]S. K. Sahoo, S. K. Panda and J. X. Xu, “Iterative learning-based high-performance current controller for switched reluctance motors,” IEEE Trans. Energy Convers., vol. 19, no. 3, pp. 491-498, 2004.
[65]M. R. Benhadria, K. Kendouci and B. Mazari, “Torque ripple minimization of switched reluctance motor using hysteresis current control,” in Proc. IEEE ISIE, 2006, pp. 2158-2162.
[66]R. Gobbi and K. Ramar, “Optimisation techniques for a hysteresis current controller to minimise torque ripple in switched reluctance motors,” IET Proc. Elect. Power Applicat., vol. 3, no. 5, pp. 453-460, 2009.
[67]M. T. Alrifai, J. H. Chow and D. A. Torrey, “Backstepping nonlinear speed controller for switched-reluctance motors,” IEE Proc. Elect. Power Applicat., vol. 150, no. 2, pp. 193-200, 2003.
[68]J. Uffe and J. W. Ahn, “Nonlinear, time variant speed control of a single phase hybrid switched reluctance motor,” in Proc. IEEE INTELEC, 2009, pp. 1-5.
[69]G. John and A. R. Eastham “Robust speed control of a switched reluctance drive,” in Proc. IEEE CCECE, 1993. pp. 317-320.
[70]T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 800-808, 1997.
[71]C. Lucas, M. M. Shanehchi, P. Asadi and P. M. Rad, “A robust speed controller for switched reluctance motor with nonlinear QFT design approach,” in Proc. IEEE IAS, 2000, vol. 3, pp. 1573-1577.
[72]K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor,” IEE Proc. Electric Power Applicat., vol. 148, no. 4, 2001.
[73]J. Y. Seo, H. R. Cha, H. Y. Yang, J. C. Seo, K. H. Kim, Y. C. Lim and D. H. Jang, “Speed control method for switched reluctance motor drive using self-tuning of switching angle,” in Proc. IEEE ISIE, 2001, vol. 2, pp. 811-815.
[74]B. Singh, V. K. Sharma and S. S. Murthy, “Performance analysis of adaptive fuzzy logic controller for switched reluctance motor drive system,” in Proc. IEEE IAS, 1998, vol. 1, pp. 571-579.
[75]K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002.
E. Commutation Tuning
[76]J. J. Gribble, P. C. Kjaer, C. Cossar and T. J. E. Miller, “Optimal commutation angles for current controlled switched reluctance motors,” in Proc. IET ICPEVSD, pp. 87-92, 1996.
[77]C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
[78]M. Rodrigues, P. J. Costa Branco and W. Suemitsu, “Fuzzy logic torque ripple reduction by turn-off angle compensation for switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 48, pp. 711-715, 2001.
[79]R. Orthmann and H. P. Schoner, “Turn-off angle control of switched reluctance motors for optimum torque output,” in Proc. Fifth European Conf. on Power Electron. and Applicat., 1993, vol. 6, pp. 20-25.
[80]B. Fahimi, G. Suresh, J. P. Johnson, M. Ehsani, M. Arefeen and I. Panahi, “Self-tuning control of switched reluctance motors for optimized torque per ampere at all operating points,” in Proc. IEEE APEC, 1998, vol. 2, pp. 778-783.
[81]S. A. Fatemi, H. M. Cheshmehbeigi and E. Afjei, “Self-tuning approach to optimization of excitation angles for switched-reluctance motor drives,” in Proc. IEEE ECCTD, 2009, pp. 851-856.
[82]K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003.
F. Battery Powered Motor Drives and Front-End Converters
[83]A. Fratta, P. Guglielmi, F. Villata and A. Vagati, “Efficiency and cost-effectiveness of AC drives for electric vehicles improved by a novel, boost DC-DC conversion structure,” in Proc. IEEE Power Electronics in Transportation Conf., 1998, pp. 11-19.
[84]F. Caricchi, F. Crescimbini, G. Noia and D. Pirolo, “Experimental study of a bidirectional DC-DC converter for the DC link voltage control and the regenerative braking in PM motor drives devoted to electrical vehicles,” in Proc. IEEE APEC.1994, vol. 1, pp. 381-389.
[85]F. Caricchi, F. Crescimbini and A. D. Napoli, “20kW water-cooled prototype of a buck-boost bidirectional DC-DC converter topology for electrical vehicle motor drives,” in Proc. IEEE APEC, 1995, pp. 887-892.
[86]F. Caricchi, F. crescimbini, F. G. Capponi and L. Solero, “Study of bi-directional buck-boost converter topologies for application in electrical vehicle motor drives,” in Proc. IEEE APEC, 1998, vol. 1, pp. 287-293.
[87]S. K. Sul and S. J. Lee, “An integral battery charger for four-wheel drive electric vehicle,” IEEE Trans. Ind. Appl., vol. 31, no. 5, pp. 1096-1099, 1995.
[88]K. T. Weng and C. Pollock, “Low-cost battery-powered switched reluctance drives with integral battery-charging capability,” IEEE Trans. Ind. Appl., vol. 36, no. 6, pp. 1676-1681, 2000.
[89]K. P. Yalamanchili and M. Ferdowsi, “Review of multiple input DC-DC converters for electric and hybrid vehicles,” in Proc. IEEE Vehicle Power and Propulsion Conf., 2005, pp. 552-555.
[90]P. Vijayraghavan and R. Krishnan, “Front-end buck converter topology for SRM drives- design and control,” in Proc. IEEE IECON, 2003, pp. 3013-3018.
[91]A. K. Jain and N. Mohan, “SRM power converter for operation with high demagnetization voltage,” IEEE Trans. Ind. Appl., vol. 41, pp. 1224-1231, 2005.
[92]R. Krishnan, S. Y. Park and K. Ha, “Theory and operation of a four-quadrant switched reluctance motor drive with a single controllable switch-the lowest cost four-quadrant brushless motor drive,” IEEE Trans. Ind. Appl., vol. 41, pp. 1047-1055, 2005.
G. Switch-Mode Rectifiers and Battery Chargers
[93]R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed., Norwell Massachusetts: Kluwer Academic Publishers, 2001.
[94]O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
[95]B. Singh, N. B. Singh, A. Chandra, K. A. Haddad, A. Pandey and P. D. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
[96]R. Erickson, M. Madigan and S. Singer, “Design of a simple high-power-factor rectifier based on the flyback converter,” in Proc. APEC, 1990, pp. 792-801.
[97]Y. C. Chang and C. M. Liaw, “Design and control for a charge-regulated flyback switch mode rectifier,” IEEE Trans. Power Electron., vol. 24, no. 1, pp. 59-74, 2009.
[98]R. Morrison and M. G. Egan, “A new modulation strategy for a buck-boost input AC/DC converter,” IEEE Trans. Power Electron., vol. 16, pp. 34-45, 2001.
[99]K. Matsui, I. Yamamoto, T. Kishi, M. Hasegawa, H. Mori and F. Ueda, “A comparison of various buck-boost converters and their application to PFC,” in Proc. IEEE IECON, 2002, vol. 1, pp. 30-36.
[100]J. Chen, D. Maksimovic and R. W. Erickson, “Analysis and design of a low-stress buck-boost converter in universal-input PFC applications,” IEEE Trans. Power Electron., vol. 41, pp. 320-329, 2006.
[101]L. Sollero, V. Serrao, M. Montuoro and A. Romanelli, “Low THD variable load buck PFC converter,” in Proc. PESC, 2008, pp. 906-912.
[102]H. Laszlo, G. Liu and M. J. Milan, “Design-oriented analysis and performance evaluation of buck PFC front-end,” in Proc. APEC, 2009, pp. 1170-1176.
[103]S. K. Sul and S. J. Lee, “An integral battery charger for four-wheel drive electric vehicle,” IEEE Trans. Ind. Appl., vol. 31, no. 5, pp. 1096-1099, 1995.
[104]L. Solero, “Nonconventional on on-board charger for electric vehicle propulsion batteries,” IEEE Trans. Veh. Technol., vol. 50, no. 1, pp. 144-149, 2001.
[105]M. Barnes and C. Pollock, “Forward converters for dual voltage switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 16, no. 1, pp. 83-91, 2001.
[106]F. J. Perez-Pinal and I. Cervantes, “Multi-reconfigurable power system for EV applications,” in Proc. EPE-PEMC, 2006, pp. 491-495.
[107]Y. Lee, A. Khaligh and A. Emadi, “Advanced integrated bidirectional AC/DC and DC/DC converter for plug-in hybrid electric vehicles,” IEEE Trans. Ind., vol. 58, no. 8, pp. 3970-3980, Oct. 2009.
[108]F. Musavi, W. Eberle and W. Dunford, “A high-performance single-phase AC/DC power factor corrected boost converter for plug in hybrid electric vehicle battery chargers,” IEEE ECCE, 2010, pp. 3588-3595.
[109]B. Bilgin, A. Emadi, and M. Krishnamurthy, “Design considerations for a universal input battery charger circuit for PHEV applications,” in Proc. IEEE ISIE, 2010, pp. 3407-3412.
[110]J. Kim, G. Choe, H. Jung, B. Lee, Y. Cho and K. Han, “Design and implementation of a high-efficiency on-board battery charger for electric vehicles with frequency control strategy,” IEEE VPPC, 2010, pp. 1-6.
[111]Gyu. Choe, J. Kim, B. Lee, C. Won and T. Lee, “A bi-directional battery charger for electric vehicles using photovoltaic PCS systems,” in Proc. IEEE VPPC, 2011, pp. 1-6.
[112]R. Surada and A. Khaligh, “A novel approach towards integration of propulsion machine inverter with energy storage charger in plug-in hybrid electric vehicles,” in Proc. IEEE IECON , 2010, vol. 3, pp. 2493-2498.
[113]S. Haghbin, K. Khan, S. Lundmark, M. Alakula, O. Carlson, M. Leksell and O. Wallmark, “Integrated chargers for EVs and PHEVs: examples and new solutions,” in Proc. IEEE ICEMS, 2010, pp.1-6.
[114]X. Zhou, S. Lukic, S. Bhattacharya and A. Hung, “Design and control of grid-connected converter in bi-directional battery charger for plug-in hybrid electric vehicle application,” IEEE VPPC, 2010, pp. 1716-1721.
H. PWM Inverters
[115]N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: Converters, Applications and Design, 1st ed. New York: John Wiley & Sons, 2003.
[116]D. G. Holmes and T. A. Lipo, Pulse Width Modulation for Power Converters: Principles and Practice, IEEE Press, 2003.
[117]B. K. Bose, Modern Power Electronics and AC Drive, 2nd ed. New Jersey: Prentice-Hall, 2002.
[118]B. S. Prasad, S. Jain and V. Agarwal, “Universal single-stage grid-connected inverter,” IEEE Trans. Energy Convers., vol.23, no. 1, PP.128-137, 2008.
[119]X. Yaosuo, C. Liuchen and S. Pinggang, “Recent developments in topologies of single-phase buck-boost inverters for small distributed power generators: an overview,” in Proc. IPEMC, 2004, vol. 3, pp. 1118-1123.
[120]Y. Wue, L. Chang, S. B. Kjaer, J. Bordonau and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, 2004.
[121]A. C. Kyritsis, E. C. Tatakis and N. P. Papanikolaou, “Optimum design of the current-source flyback inverter for decentralized grid-connected photovoltaic systems,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 281-293, 2008.
[122]Q. Li and P. Wolfs, “A review of the single phase photovoltaic module integrated converter topologies with three different DC link configurations,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1320-1333, 2008.
[123]T. Kerekes, R. Teodorescu and U. Borup, “Transformerless photovoltaic inverters connected to the grid,” in Proc. IEEE APEC, 2007, pp. 1733-1737.
[124]H. Patel and V. Agarwal, “A single-stage single-phase transformer-less doubly grounded grid-connected PV interface,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 93-101, 2009.
[125]R. Gonzalez, E. Gubia, J. Lopez and L. Marroyo, “Transformerless single-phase multilevel-based photovoltaic inverter,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2694-2702, 2008.
[126]R. González, J. López, P. Sanchis and L. Marroyo, “Transformerless inverter for single-phase photovoltaic systems,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 693-697, 2007.
[127]S. J. Chiang and C. M. Liaw, “Single-phase three-wire transformerless inverter,” IEE Proc. Electr. Power Appl., vol. 141, no. 4, pp. 197-205, 1994.
[128]J. Wang, F. Z. Peng, J. Anderson, A. Joseph, R. Buffenbarger, “Low cost fuel cell inverter system for residential power generation,” APECE., vol. 1, pp. 367-373, 2004.
[129]X. Yu, M. R. Starkr, L.M. Tolbert, B. Ozpineci, “Fuel cell power conditioning for electric power applications: a summary,” IET Elect. Power Appl., vol. 1, no. 5, pp. 643-656, 2007.
[130]C. G. C. Branco, C. M. T. Cruz, R. P. Torrico-Bascope, F. L. M. Antunes, “A Nonisolated Single-Phase UPS Topology With 110-V/220-V Input–Output Voltage Ratings,” IEEE Trans. Ind. Elect., vol. 55, no. 8, pp. 2974-2983, 2008.
[131]L.Y. Lu, C. L. Wang, Ai Ming, T. Y. Chen, H. C. Chang and C. M. Liaw, “Development of a single-phase three-wire inverter and its robust waveform control,” R.O.C. 30th Symposium on Electrical Power Engineering, 2009, pp. E016-1-E016-6.
[132]T. Tanaka, T. Sekiya, Y. Baba, M. Okamoto, M. Hiraki, “A new half-bridge based inverter with the reduced-capacity DC capacitors for DC micro-grid,” IEEE ECCE., pp. 2564-2569, 2010.
[133]T. M. Lin, Design and implementation of a DSP-based switched reluctance motor drive, Master Thesis, Department of Electric Engineering, National Tsing Hua University, R.O.C., 2008.