研究生: |
蔡東霖 Tsai, Tung-Lin |
---|---|
論文名稱: |
IEEE 802.16j多躍中繼網路中以頻寬重整與借用為基礎之排程演算法 Repacking and Borrowing-Based Constant-Time Resource Scheduling for IEEE 802.16j Multihop Relay Networks |
指導教授: |
楊舜仁
Yang, Shun-Ren |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 45 |
中文關鍵詞: | 頻寬借用 、IEEE 802.16j 、多躍式傳輸 、效能最佳化 、頻寬重整 、資源排程 |
外文關鍵詞: | Borrowing, IEEE 802.16j, Multihop relay, Near-optimal throughput, Repacking, Resource scheduling |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
無線多躍式存取是近年相當受到重視的一種傳輸技術,並且被使用在最新的IEEE 802.16j 多躍中繼網路上,相較於傳統單躍式網路,多躍中繼網路能夠大幅改善使用者的無線傳輸品質並且提升系統整體效能。為了達到最高的頻寬資源使用率,現今絕大多數的資源排程方法皆是基於動態資源分配原則所設計,雖然動態分配能夠達到良好的資源使用率,卻也大幅提升了系統運算的負擔。由於在實際的IEEE 802.16j 多躍中繼網路中,排程時間非常短,因此,這類型基於動態資源分配的排程演算法可能並不適合套用在實際的系統環境中,為了降低系統運算的負擔並且讓系統整體效能維持在一定的水準,我們針對IEEE 802.16j 多躍中繼網路提出了一個以頻寬重整與借用為基礎之快速排程演算法,藉由將頻寬重整與借用之演算法的部分運算負擔分散在系統排程時間之外,再結合靜態資源分配的優點,經由豐富的實驗數據驗證了:不管是在對稱式或非者對稱式的網路架構中,我們提出的資源排程演算法能在常數時間內達到接近最佳資源使用率的成效。
Multihop relay (MR) technology is one of the most promising technologies that provide performance enhancement to the existing network systems. To achieve the maximal system performance, most current research allocates resources in a dynamic manner. However, in MR networks, the issues of path selection and spatial reuse will massively increase the complexity of resource scheduling. As a result, the majority of dynamic scheduling schemes might be not applicable in practical implementation due to high computation complexity. In this paper, to reduce the scheduling complexity while achieving near-optimal system throughput, we propose a constant-time repacking and borrowing-based resource scheduling (RBRS) algorithm for IEEE 802.16j MR networks. In the repacking phase of RBRS, the connection which served with high-cost path can be handed off to low-cost path and thus increase the number of available resources. In the borrowing phase, the overloaded cells are capable of borrowing resources from the under-loaded cells and thus the resource utilization can be further improved. Since both the repacking and borrowing processes are executed only with computation overhead of the selection operation, RBRS can make each scheduling decision in constant time. Simulation models are developed to investigate the performance of RBRS. The simulation results indicate that RBRS is at least 8.91 times faster than the state-of-the-art dynamic scheduling scheme while yielding near-optimal throughput. Even in the asymmetric environments, RBRS strikes an excellent balance between the system throughput and scheduling computation time.
[1] A. Ghosh, D. R. Wolter, J. G. Andrews and R. Chen. Broadband wireless access with WiMax/802.16: current performance benchmarks and future potential. IEEE Communications Magazine, 43(2):129–136, February 2005.
[2] B. Lin, P.-H. Ho, L.-L. Xie and X. Shen. Optimal relay station placement in IEEE 802.16j networks. IWCMC, pages 25–30, 2007.
[3] B. Lin, P.-H. Ho, L.-L. Xie and X. Shen. Relay Station Placement in IEEE 802.16j Dual-Relay MMR Networks. IEEE ICC, pages 3437–3441, May 2008.
[4] C.-Y. Hong and A.-C. Pang. 3-Approximation algorithm for joint routing and link scheduling in wireless relay networks. IEEE Transactions on Wireless Communications, 8(2):856–861, Feb. 2009.
[5] C.-Y. Hong and A.-C. Pang. Link Scheduling with QoS Guarantee for Wireless Relay Networks. IEEE INFOCOM, pages 2806–2810, April 2009.
[6] D. Ghosh, A. Gupta and P. Mohapatra. Admission Control and Interference-Aware Scheduling in Multi-hop WiMAX Networks. IEEE MASS, pages 1–9, Oct. 2007.
[7] D. J. A. Welsh and M. B. Powell. An upper bound for the chromatic number of a graph and its application to timetabling problems. The Computer Journal, 10(1):85– 86, 1967.
[8] D. Schultz, B. Walke, R. Pabst and T. Irnich. Fixed and Planned Relay Based Radio Network Deployment Concepts. Proc. of the 10th WIRELESS WORLD RESEARCH FORUM, October 2003.
41
[9] D. Schultz, R. Pabst and T. Irnich. Multi-hop based radio network deployment for efficient broadband radio coverage. Proc. WPMC, 2:377–381, October 2003.
[10] G. Brar, D. M. Blough and P. Santi. Computationally efficient scheduling with the physical interference model for throughput improvement in wireless mesh networks. MobiCom, pages 2–13, 2006.
[11] H.-M. Tsai, A.-C. Pang, Y.-C. Lin and Y.-B. Lin. Repacking on demand for hierarchical cellular networks. Wireless Networks, 11(6):719–728, 2005.
[12] H.-N. Hung, Y.-B. Lin, N.-F. Peng and H.-M. Tsai. Repacking on demand for two-tier wireless local loop. IEEE Transactions on Wireless Communications, 3(3):745–757, May 2004.
[13] I. Chlamtac, Y. Fang and H. Zeng. Call blocking analysis for PCS networks under general cell residence time. IEEE WCNC, pages 550–554 vol.2, 1999.
[14] IEEE 802.16e-2006 Standard. Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems -Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands. February 2006.
[15] IEEE 802.16j-2009 Standard. Part 16: Air Interface for Broadband Wireless Access Systems Amendment 1: Multiple Relay Specification. Dec 2009.
[16] IEEE C802.16j-06/168. A RS clustering scheme for IEEE 802.16j. November 2006.
[17] ITU-T G.711. Appendix II: A comfort noise payload definition for ITU-T G.711 use in packet-based multimedia communication systems. February 2000.
[18] J. Cho and Z. J. Haas. On the throughput enhancement of the downstream channel in cellular radio networks through multihop relaying. IEEE Journal on Selected Areas in Communications, 22(7):1206–1219, 2004.
[19] J. Tang, G. Xue and C. Chandler. Interference-aware routing and bandwidth allocation for QoS provisioning in multihop wireless networks. Wirel. Commun. Mob. Comput., 5(8):933–943, 2005.
[20] L. Wang, Y. Ji and F. Liu. A Novel Centralized Resource Scheduling Scheme in OFDMA-Based Two-Hop Relay-Enhanced Cellular Systems. IEEE WIMOB, pages 113–118, Oct. 2008.
[21] M. Frigo. Machine-dependent Cycle Counters Code, 2003. http://www.fftw.org/cycle.h.
[22] M. K. Awad and X. Shen. OFDMA Based Two-Hop Cooperative Relay Network Resources Allocation. IEEE ICC, pages 4414–4418, May 2008.
[23] M. Kaneko and P. Popovski. Adaptive Resource Allocation in Cellular OFDMA System with Multiple Relay Stations. IEEE VTC, pages 3026–3030, April 2007.
[24] M. Kodialam and T. Nandagopal. Characterizing achievable rates in multi-hop wireless networks: the joint routing and scheduling problem. MobiCom, pages 42–54, 2003.
[25] M. Yang and P. H. J. Chong. Time Slot Allocation Schemes for Multihop TDDCDMA Cellular System. IEEE WCNC, pages 3099–3104, March 2007.
[26] P. Djukic and S. Valaee. Link Scheduling for Minimum Delay in Spatial Re-Use TDMA. IEEE INFOCOM, pages 28–36, May 2007.
[27] S. Gandham, M. Dawande and R. Prakash. Link scheduling in sensor networks: distributed edge coloring revisited. IEEE INFOCOM, 4:2492–2501, March 2005.
[28] S. K. Das, S. K. Sen and R. Jayaram. A dynamic load balancing strategy for channel assignment using selective borrowing in cellular mobile environment. Wireless Networks, 3(5):333–347, 1997.
[29] S.-R. Yang and W.-T. Chen. SIP Multicast-Based Mobile Quality-of-Service Support over Heterogeneous IP Multimedia Subsystems. IEEE Trans. on Mobile Computing, 7(11):1297–1310, Nov. 2008.
[30] S. Ramanathan and E. L. Lloyd. Scheduling algorithms for multihop radio networks. IEEE/ACM Transactions on Networking, 1(2):166–177, 1993.
[31] T.-W. Kim, T.-Y. Min and C.-G. Kang. Opportunistic packet scheduling algorithm for load balancing in a multi-hop relay-enhanced cellular OFDMA-TDD System. APCC, pages 1–5, Oct. 2008.
[32] T. Wu, G. Li, Y. Wang, J. Huang, X. Yu and H. Tian. Fairness-Oriented Scheduling with Equilibrium for Multihop Relaying Networks Based on OFDMA. IEEE VTC, pages 1–5, Sept. 2008.
[33] W.-E. Chen, H.-N. Hung and Y.-B. Lin. Modeling VoIP Call Holding Times for Telecommunications. IEEE Network, 21(6):22–28, November-December 2007.
[34] W.-H. Park and S. Bahk. Resource Management Policies for Fixed Relays in Cellular Networks. IEEE GLOBECOM, pages 1–5, November 2006.
[35] W. Wang, Y. Wang, X.-Y. Li, W.-Z. Song and O. Frieder. Efficient interference-aware TDMA link scheduling for static wireless networks. MobiCom, pages 262–273, 2006.
[36] X. Guo, W. Ma, Z. Guo, X. Shen and Z. Hou. Adaptive Resource Reuse Scheduling for Multihop Relay Wireless Network Based on Multicoloring. IEEE Communications Letters, 12(3):176–178, March 2008.
[37] Y.-B. Lin and V. W. Mak. Eliminating the boundary effect of a large-scale personal communication service network simulation. ACM Trans. Model. Comput. Simul., 4(2):165–190, 1994.
[38] Y. Fang and I. Chlamtac. Teletraffic analysis and mobility modeling of PCS networks. IEEE Transactions on Communications, 47(7):1062–1072, July 1999.
[39] Y. Fang, I. Chlamtac and H.-B. Fei. Analytical results for optimal choice of location update interval for mobility database failure restoration in PCS networks. IEEE Transactions on Parallel and Distributed Systems, 11(6):615–624, Jun 2000.
[40] Y. Shi, W. Zhang and K. B. Letaief. Cooperative Multiplexing and Scheduling in Wireless Relay Networks. IEEE ICC, pages 3034–3038, May 2008.
[41] Y. Zhang and S. K. Das. An efficient load-balancing algorithm based on a two-threshold cell selection scheme in mobile cellular networks. Computer Communications, 23(5-6):452–461, 2000.