簡易檢索 / 詳目顯示

研究生: 塔德西
Tadesse Billo, Reta
論文名稱: 表面改質之光催化劑對二氧化碳分子吸附與交互作用於增強光催化活性之研究
Effect of Surface Modified Photocatalysts on the Adsorption and Interaction of Carbon Dioxide for Enhanced Photocatalytic Activity
指導教授: 陳貴賢
Chen, Kuei-Hsien
林麗瓊
Chen, Li-Chyong
李志浩
Lee, Chih-Hao
口試委員: 王丞浩
Wang, Chen-Hao
陳瑞山
Chen, Ruei-San
吳恆良
Wu, Heng-Liang
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 102
中文關鍵詞: 黑色二氧化鈦人工光合作用二硫化錫二氧化碳光觸媒表面修飾催化劑吸附質表面交互作用
外文關鍵詞: black TiO2, artificial photosynthesis, SnS2, photocatalytic CO2 reduction, surface modification, adsorbate-catalyst surface interaction
相關次數: 點閱:119下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用光觸媒(Photocatalytic)進行人工光合作用,使大氣中二氧化碳轉化為有機燃料已被視為減緩當前二氧化碳對環境衝擊以及能源短缺之兩大重要議題最被看好的方式之一。而目前已有許多半導體材料被發現可做為光觸媒並成功地應用在人工光合作用上。然而,在光觸媒的材料設計上仍有許多問題須要解決,例如:降低捕捉二氧化碳分子與使其能發生反應之活化能,以及對烴產物的選擇性等等。而在這些半導體材料系統中,若考慮到照光時的穩定性、毒性、製造成本與環境危害程度,二氧化鈦(TiO2)以及二硫化錫(SnS2)是在這方面應用的絕佳選擇。但事實上,這兩種材料仍因為具有應用上之條件限制使得光催化效率不盡理想,因此,透過表面修飾來優化其轉換效率會是個可行的方法之一。
    在本研究中,我們利用了溶膠-凝膠製程(sol-gel synthesis)進行固態反應(solid-state reaction) 以製備以及修飾TiO2以及SnS2表面。在材料的設計與鑑定上,我們透過電腦運算補助以及臨場觀察觸媒表面吸附物質之交互作用以及它們對二氧化碳還原反應的影響。
    透過鎳奈米簇(Ni-nanocluster)修飾黑色 二氧化鈦粉末(Ni/TiO2[Vo])得到內建雙活性位點(built-in dual active sites)用於二氧化碳光催化後,我們發現鎳奈米簇與氧空位造成的增效作用(synergistic effects)提供了以下的優點:(1)穩定的二氧化碳反應位點以及極低的轉換活化能(0.08 eV)、(2)反應性極佳的表面、(3)使電子能夠快速遷移的通道、(4)改變能帶位置至較低波長的光區並增強了對太陽光之交互作用。透過此方法製備的Ni/TiO2[Vo]光催化劑具有高選擇性和增強的光催化活性,其太陽能燃料產量是市售TiO2(P-25)的18倍以上。
    另外,我們透過了離子佈植的方式得到了二氧化錫薄膜(C-SnS2),利用X射線吸收近能帶緣結構(X-ray absorption near edge structure, XANES)研究電子在C-SnS2的分布情況以及光生電荷(photogenerated charge)。我們也利用臨場暗電流量測配合拉曼光譜(Raman spectroscopy) 檢視C-SnS2對二氧化碳的表面親和力。在優化離子佈植的劑量後,我們發現具有1%碳佈植的二硫化錫薄膜,相較於未經任何修飾的二硫化錫薄膜,將可提升二氧化碳轉換效率達108倍,以及提高對甲烷的選擇比至89%。這樣的結果我們認為,因為碳原子可以做為活性較高的吸附位置,使得碳原子在二硫化錫薄膜內,除了提升了電荷分離與遷移的能力外,也改善了薄膜與太陽光作用的效率。


    Photocatalytic conversion of CO2 to chemical fuels by artificial photosynthesis is one of the most promising approaches to minimizing the impact of CO2 on the global carbon balance and tackling both energy and global environmental challenges. In this regard, several semiconductor photocatalysts have been used for photocatalytic CO2 conversion into different useful products via artificial photosynthesis. However, one of the key challenges in artificial photosynthesis is to design a photocatalyst that can bind and activate the CO2 molecule with the smallest possible activation energy and produce selective hydrocarbon products. Among them, TiO2 and SnS2 are the best candidates to study the photocatalytic activity since both materials are very cheap, excellent photostability, nontoxicity, and environmentally friendly. However, both of the materials have limitations to be fully utilized in photocatalytic CO2 reduction without further surface modifications.
    In this regard, we demonstrated a synthesis and surface modification on TiO2 and SnS2 surfaces using sol-gel synthesis and solid-state reaction approach. Our material design and characterization approaches, which involved computational calculations and in-situ observations enabled us to correlate the adsorbate-catalyst surface interactions and their implications on photocatalytic CO2 reduction.
    We report a combined experimental and computational study on Ni-nanocluster loaded black TiO2 (Ni/TiO2[Vo]) with built-in dual active sites for selective photocatalytic CO2 conversion. Our findings reveal that the synergistic effects of deliberately induced Ni nanoclusters and oxygen vacancies provide (1) energetically stable CO2 binding sites with lowest activation energy (0.08 eV), (2) highly reactive sites, (3) fast electron transfer pathway, (4) enhanced light-harvesting by lowering the bandgap. The Ni/TiO2[Vo] photocatalyst has demonstrated highly selective and enhanced photocatalytic activity of more than 18 times higher solar fuel production than the commercial TiO2 (P-25).
    Similarly, carbon implanted SnS2 thin films (C-SnS2) were prepared to study photocatalytic activity and adsorbate-catalyst surface interactions during CO2 photoreduction. The electron density distribution in C-SnS2 and its contribution toward the photogenerated charge transfer process has been analyzed by the angle-dependent X-ray absorption near-edge structure (XANES) study.
    The C-SnS2 surface affinity toward the CO2 molecule was monitored by in-situ dark current and Raman spectroscopy measurements. By optimizing the dose during ion implantation, SnS2 thin film with 1 wt% carbon incorporation shows 108 times enhancement in the CO2 conversion efficiency and more than 89% product selectivity toward CH4 formation compared with the as-grown SnS2 without carbon incorporation. The improved photocatalytic activity can be ascribed to enhanced light harvesting, pronounced charge-transfer between SnS2 and carbon with improved carrier separation and the availability of highly active carbon sites that serve as favorable CO2 adsorption sites.

    Acknowledgments.......................................................i 摘要................................................................iii Abstract.............................................................iv Table of Contents....................................................vi List of Abbreviations..............................................viii List of Figure.......................................................ix List of Tables.......................................................xi 1.Introduction........................................................1 1.1 Background........................................................1 1.2 Photocatalytic Conversion of CO2 on Semiconductor Surface.........3 1.3 Surface Modifications for Catalytic CO2 Reduction.................6 1.4 Thesis overview...................................................9 2.Experimental Methods and Characterization Techniques...............11 2.1 Introduction.....................................................11 2.1.1 X-Ray Powder Diffraction.......................................11 2.1.2 X-Ray Absorption Spectroscopy..................................12 2.1.3 X-Ray Photoelectron Spectroscopy...............................13 2.1.4 Raman Spectroscopy.............................................13 2.1.5 Scanning Electron Microscopy and Transmission Electron Microscopy...........................................................14 2.2 Characterization of Black TiO2 and C-SnS2 photocatalysts.........15 2.2.1 Characterization of Ni-Nanocluster Modified Black TiO2.........16 2.2.2 Characterization of SnS2 thin-films............................17 2.3 Material Synthesis and Modification Approaches...................17 2.3.1 Hydrothermal Synthesis of Ni-Nanocluster Modified TiO2.........18 2.3.2 Hydrogenation of Ni-Nanocluster Modified TiO2..................19 2.3.3 Chemical Vapor Transport (CVT) Growth of SnS2 Thin-films.......20 2.3.4 Carbon Ion Implantation of SnS2 Thin-Films.....................23 2.4 CO2 Reduction Experiment.........................................24 2.4.1 Continuous Flow CO2 Reduction Experiment.......................24 2.4.2 Batch Method CO2 Reduction Experiment..........................26 2.5 Experiments on the Molecular CO2 Interaction and Adsorption Studies..............................................................26 2.5.1 The CO2 Interaction and Activation on Black TiO2 Using Computational Methods................................................26 2.5.2 In-situ Dark/Photocurrent Response Measurements on C-SnS2 Thin-Films................................................................27 2.5.3 In-situ Raman Spectroscopy Measurements on C-SnS2 Thin-Films...28 3.Photocatalytic CO2 Reduction Activity on Ni-Nanocluster Modified Black TiO2...........................................................31 3.1 Introduction.....................................................31 3.2 Results and Discussion...........................................33 3.2.1 Morphology and structural properties...........................33 3.2.2 Optical properties.............................................38 3.2.3 Spectroscopy studies...........................................40 3.2.3.1 Raman spectroscopy...........................................40 3.2.3.2 X-ray photoelectron spectroscopy (XPS).......................41 3.2.3.3 X-ray Absorption Spectroscopy (XAS)..........................43 3.2.4 Photocatalytic CO2 reduction activities........................45 3.3 Summary..........................................................53 4.Photocatalytic CO2 reduction activity on carbon implanted SnS2 thin films................................................................54 4.1 Introduction.....................................................54 4.2 Results and Discussion...........................................55 4.2.1 Morphology and structural properties...........................55 4.2.2 Optical properties.............................................59 4.2.3 Spectroscopy studies...........................................60 4.2.3.1 Raman spectroscopy...........................................60 4.2.3.2 X-ray photoelectron spectroscopy (XPS).......................62 4.2.3.3 X-ray Absorption Spectroscopy................................63 4.2.4 Photocatalytic CO2 reduction activities........................66 4.3 Summary..........................................................74 5.Effect of surface modification on molecular CO2 interaction and adsorption...........................................................75 5.1 Introduction.....................................................75 5.2 Results and Discussion...........................................77 5.2.1 Computational study of molecular CO2 adsorption and dissociation on Ni/TiO2[Vo] surface...............................................77 5.2.1.1 CO2 Adsorption and Dissociation Energy.......................78 5.2.2 In-situ adsorbate-catalyst surface interaction analyses on SnS2 thin films...........................................................83 5.2.2.1 In-situ dark/photo current analysis..........................83 5.2.2.2 In-situ Raman spectroscopy analysis..........................86 5.3 Summary..........................................................88 6.Conclusion and Future Perspectives.................................89 6.1 Future Perspectives..............................................91 References...........................................................92 Appendix A...........................................................98 Publications........................................................102 Selected Presentations..............................................102

    N. S. Lewis and D. G. Nocera, Proceedings of the National Academy of Sciences, 2006, 103, 15729-15735.
    2. A. Goeppert, M. Czaun, J.-P. Jones, G. K. Surya Prakash and G. A. Olah, Chemical Society Reviews, 2014, 43, 7995-8048.
    3. J. Michl, Nature Chemistry, 2011, 3, 268-269.
    4. H. J. S. Christiana Figueres, Gail Whiteman, Johan Rockström, Anthony Hobley, Stefan Rahmstorf, Nature, 2017, 546, 595.
    5. Y. Wang, L. Zhao, A. Otto, M. Robinius and D. Stolten, Energy Procedia, 2017, 114, 650-665.
    6. H.-R. M. Jhong, S. Ma and P. J. A. Kenis, Current Opinion in Chemical Engineering, 2013, 2, 191-199.
    7. A. Erdöhelyi, M. Pásztor and F. Solymosi, Journal of Catalysis, 1986, 98, 166-177.
    8. J. C. Lee, J. H. Kim, W. S. Chang and D. Pak, Journal of Chemical Technology & Biotechnology, 2012, 87, 844-847.
    9. D. K. Dogutan and D. G. Nocera, Accounts of Chemical Research, 2019, 52, 3143-3148.
    10. M. E. El-Khouly, E. El-Mohsnawy and S. Fukuzumi, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017, 31, 36-83.
    11. S. Meryem Syeda, S. Nasreen, M. Siddique and R. Khan, Journal, 2018, 34, 409.
    12. A. Fujishima and K. Honda, Nature, 1972, 238, 37-38.
    13. A. Boudjemaa, M. Trari and K. Bachari, Environmental Progress & Sustainable Energy, 2014, 33, 141-146.
    14. M. Halmann, Steinberg, M, Greenhouse Gas Carbon Dioxide Mitigation, CRC Press 1st edn., 1999.
    15. J. Low, B. Cheng and J. Yu, Applied Surface Science, 2017, 392, 658-686.
    16. X. Chang, T. Wang and J. Gong, Energy & Environmental Science, 2016, 9, 2177-2196.
    17. N. S. Murugesan P., Manickam M., in Photocatalytic Conversion of Carbon Dioxide into Hydrocarbons, ed. A. A. Inamuddin, Lichtfouse E., Environmental Chemistry for a Sustainable World,Springer, Cham, 2020, vol. 40.
    18. L. Wang, W. Chen, D. Zhang, Y. Du, R. Amal, S. Qiao, J. Wu and Z. Yin, Chem Soc Rev, 2019, 48, 5310-5349.
    19. D. C. Sorescu, W. A. Al-Saidi and K. D. Jordan, J Chem Phys, 2011, 135, 124701.
    20. L. Mino, G. Spoto and A. M. Ferrari, Journal of Physical Chemistry C, 2014, 118, 25016-25026.
    21. W. Tu, Y. Zhou and Z. Zou, Advanced Materials, 2014, 26, 4607-4626.
    22. L. Yuan and Y.-J. Xu, Applied Surface Science, 2015, 342, 154-167.
    23. Y. Lei, S. Song, W. Fan, Y. Xing and H. Zhang, The Journal of Physical Chemistry C, 2009, 113, 1280-1285.
    24. R. Wei, T. Zhou, J. Hu and J. Li, Materials Research Express, 2014, 1, 025018.
    25. T. Billo, I. Shown, A. k. Anbalagan, T. A. Effendi, A. Sabbah, F.-Y. Fu, C.-M. Chu, W.-Y. Woon, R.-S. Chen, C.-H. Lee, K.-H. Chen and L.-C. Chen, Nano Energy, 2020, 72, 104717.
    26. T. Billo, F.-Y. Fu, P. Raghunath, I. Shown, W.-F. Chen, H.-T. Lien, T.-H. Shen, J.-F. Lee, T.-S. Chan, K.-Y. Huang, C.-I. Wu, M. C. Lin, J.-S. Hwang, C.-H. Lee, L.-C. Chen and K.-H. Chen, Small, 2018, 14, 1702928.
    27. H. Jagodzinski, Berichte der Bunsengesellschaft für physikalische Chemie, 1975, 79, 553-553.
    28. G. E. Jauncey, Proc Natl Acad Sci U S A, 1924, 10, 57-60.
    29. C. M. C. Barbara L Dutrow, Geochemical Instrumentation and Analysis, 2014.
    30. M. Newville, Reviews in Mineralogy and Geochemistry, 2014, 78, 33-74.
    31. P. G. Zambonin and E. Desimoni, in Molten Salt Chemistry, eds. G. Mamantov and R. Marassi, Springer Netherlands, Dordrecht, 1987, DOI: 10.1007/978-94-009-3863-2_21, ch. Chapter 21, pp. 425-445.
    32. J. Laserna, Wiley Analytical Science, 2014.
    33. G. S. Bumbrah and R. M. Sharma, Egyptian Journal of Forensic Sciences, 2016, 6, 209-215.
    34. A. Kaech, Introduction to electron microscopy http://www.zmb.uzh.ch/static/bio407/assets/Script_AK_2014).
    35. F. Habashi, A History of Metallurgy, Métallurgie Extractive Québec 1994.
    36. S. Feng and R. Xu, Accounts of Chemical Research, 2001, 34, 239-247.
    37. W. Shi, S. Song and H. Zhang, Chemical Society Reviews, 2013, 42, 5714-5743.
    38. H. Oppermann, M. Schmidt and P. Schmidt, Zeitschrift für anorganische und allgemeine Chemie, 2005, 631, 197-238.
    39. M. B. Peer Schmidt, Robert Glaum and Marcus Schmidt, in Advanced Topics on Crystal Growth, DOI: 10.5772/55547.
    40. G. Kresse and J. Furthmuller, Phys Rev B Condens Matter, 1996, 54, 11169-11186.
    41. H. J. Freund and R. P. Messmer, Surface Science, 1986, 172, 1-30.
    42. Z. He, Y. Yu, D. Wang, J. Tang, J. Chen and S. Song, RSC Advances, 2016, 6, 23134-23140.
    43. O. Ola and M. M. Maroto-Valer, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 24, 16-42.
    44. B. S. Kwak, K. Vignesh, N. K. Park, H. J. Ryu, J. I. Baek and M. Kang, Fuel, 2015, 143, 570-576.
    45. M. A. Fox and M. T. Dulay, Chemical Reviews, 1993, 93, 341-357.
    46. J. X. Low, B. Cheng and J. G. Yu, Applied Surface Science, 2017, 392, 658-686.
    47. S. Chong and T. C.-K. Yang, Results in Physics, 2017, 7, 1167-1174.
    48. B. Yu, Y. Zhou, P. Li, W. Tu, P. Li, L. Tang, J. Ye and Z. Zou, Nanoscale, 2016, 8, 11870-11874.
    49. E. Liu, L. Kang, Y. Yang, T. Sun, X. Hu, C. Zhu, H. Liu, Q. Wang, X. Li and J. Fan, Nanotechnology, 2014, 25, 165401.
    50. T. Sun, J. Fan, E. Liu, L. Liu, Y. Wang, H. Dai, Y. Yang, W. Hou, X. Hu and Z. Jiang, Powder Technology, 2012, 228, 210-218.
    51. H. Zhang, Z. Xing, Y. Zhang, Z. Li, X. Wu, C. Liu, Q. Zhu and W. Zhou, RSC Advances, 2015, 5, 107150-107157.
    52. I. Ganesh, A. K. Gupta, P. P. Kumar, P. S. Chandra Sekhar, K. Radha, G. Padmanabham and G. Sundararajan, Materials Chemistry and Physics, 2012, 135, 220-234.
    53. J. Fan, E.-z. Liu, L. Tian, X.-y. Hu, Q. He and T. Sun, Journal of Environmental Engineering, 2011, 137, 171-176.
    54. O. O. Ola and M. M. Maroto-Valer, Energy Procedia, 2014, 63, 7963-7967.
    55. X. Chen, L. Liu, P. Y. Yu and S. S. Mao, Science, 2011, 331, 746-750.
    56. S.-T. Myung, M. Kikuchi, C. S. Yoon, H. Yashiro, S.-J. Kim, Y.-K. Sun and B. Scrosati, Energy & Environmental Science, 2013, 6, 2609-2614.
    57. J. Zheng, L. Liu, G. Ji, Q. Yang, L. Zheng and J. Zhang, ACS Appl Mater Interfaces, 2016, 8, 20074-20081.
    58. G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang and Y. Li, Nano Lett, 2011, 11, 3026-3033.
    59. C.-C. Chuang, C.-K. Lin, T. T. Wang, V. Srinivasadesikan, P. Raghunath and M. C. Lin, RSC Advances, 2015, 5, 81371-81377.
    60. W. Qingli, Z. Zhaoguo, C. Xudong, H. Zhengfeng, D. Peimei, C. Yi and Z. Xiwen, Journal of CO2 Utilization, 2015, 12, 7-11.
    61. L. Liu, F. Gao, H. Zhao and Y. Li, Applied Catalysis B: Environmental, 2013, 134-135, 349-358.
    62. J. Zhao, Y. Li, Y. Zhu, Y. Wang and C. Wang, Applied Catalysis A: General, 2016, 510, 34-41.
    63. X. Xin, T. Xu, L. Wang and C. Wang, Scientific Reports, 2016, 6, 23684.
    64. X. Liu, G. Zhu, X. Wang, X. Yuan, T. Lin and F. Huang, Advanced Energy Materials, 2016, 6, 1600452.
    65. C. G. Pope, Journal of Chemical Education, 1997, 74, 129.
    66. N. D. Abazovic, M. I. Comor, M. D. Dramicanin, D. J. Jovanovic, S. P. Ahrenkiel and J. M. Nedeljkovic, J Phys Chem B, 2006, 110, 25366-25370.
    67. W. F. Zhang, Y. L. He, M. S. Zhang, Z. Yin and Q. Chen, Journal of Physics D: Applied Physics, 2000, 33, 912-916.
    68. L.-B. Xiong, J.-L. Li, B. Yang and Y. Yu, J. Nanomaterials, 2012, 2012, Article 9.
    69. F. Guillemot, M. C. Porté, C. Labrugère and C. Baquey, Journal of Colloid and Interface Science, 2002, 255, 75-78.
    70. L. Qian, L. Gu, L. Yang, H. Yuan and D. Xiao, Nanoscale, 2013, 5, 7388-7396.
    71. E. L. Ratcliff, J. Meyer, K. X. Steirer, A. Garcia, J. J. Berry, D. S. Ginley, D. C. Olson, A. Kahn and N. R. Armstrong, Chemistry of Materials, 2011, 23, 4988-5000.
    72. S. Neatu, J. A. Macia-Agullo, P. Concepcion and H. Garcia, J Am Chem Soc, 2014, 136, 15969-15976.
    73. B. G. Baker, B. B. Johnson and G. L. C. Maire, Surface Science, 1971, 24, 572-586.
    74. F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A. C. Ferrari, R. S. Ruoff and V. Pellegrini, Science, 2015, 347, 1246501.
    75. H. C. Hsu, I. Shown, H. Y. Wei, Y. C. Chang, H. Y. Du, Y. G. Lin, C. A. Tseng, C. H. Wang, L. C. Chen, Y. C. Lin and K. H. Chen, Nanoscale, 2013, 5, 262-268.
    76. I. Shown, H. C. Hsu, Y. C. Chang, C. H. Lin, P. K. Roy, A. Ganguly, C. H. Wang, J. K. Chang, C. I. Wu, L. C. Chen and K. H. Chen, Nano Lett, 2014, 14, 6097-6103.
    77. G. Domingo, R. S. Itoga and C. R. Kannewurf, Physical Review, 1966, 143, 536-541.
    78. S. K. Panda, A. Antonakos, E. Liarokapis, S. Bhattacharya and S. Chaudhuri, Materials Research Bulletin, 2007, 42, 576-583.
    79. T. Shibata, N. Kambe, Y. Muranushi, T. Miura and T. Kishi, Journal of Physics D: Applied Physics, 1990, 23, 719-723.
    80. X. Rui, H. Tan and Q. Yan, Nanoscale, 2014, 6, 9889-9924.
    81. J.-w. Seo, J.-t. Jang, S.-w. Park, C. Kim, B. Park and J. Cheon, Advanced Materials, 2008, 20, 4269-4273.
    82. Z. Ma, Z. Yao, Y. Cheng, X. Zhang, B. Guo, Y. Lyu, P. Wang, Q. Li, H. Wang, A. Nie and A. Aspuru-Guzik, Nano Energy, 2020, 67, 104276.
    83. G. M. Kumar, F. Xiao, P. Ilanchezhiyan, S. Yuldashev and T. W. Kang, RSC Advances, 2016, 6, 99631-99637.
    84. G. Liu, Z. Li, T. Hasan, X. Chen, W. Zheng, W. Feng, D. Jia, Y. Zhou and P. Hu, Journal of Materials Chemistry A, 2017, 5, 1989-1995.
    85. F. Li, L. Chen, M. Xue, T. Williams, Y. Zhang, D. R. MacFarlane and J. Zhang, Nano Energy, 2017, 31, 270-277.
    86. A. Zhang, R. He, H. Li, Y. Chen, T. Kong, K. Li, H. Ju, J. Zhu, W. Zhu and J. Zeng, Angewandte Chemie International Edition, 2018, 57, 10954-10958.
    87. C. Yan, X. Xue, W. Zhang, X. Li, J. Liu, S. Yang, Y. Hu, R. Chen, Y. Yan, G. Zhu, Z. Kang, D. J. Kang, J. Liu and Z. Jin, Nano Energy, 2017, 39, 539-545.
    88. Y. Sun, H. Cheng, S. Gao, Z. Sun, Q. Liu, Q. Liu, F. Lei, T. Yao, J. He, S. Wei and Y. Xie, Angewandte Chemie International Edition, 2012, 51, 8727-8731.
    89. Z. Cheng, F. Wang, T. A. Shifa, K. Liu, Y. Huang, Q. Liu, C. Jiang and J. He, Applied Physics Letters, 2016, 109, 053905.
    90. L. Han, Journal of physical chemistry, 2019, v. 123, pp. 2398-2409-2019 v.2123 no.2394.
    91. Y. Sun, G. Li, J. Xu and Z. Sun, Materials Letters, 2016, 174, 238-241.
    92. X. Jiao, X. Li, X. Jin, Y. Sun, J. Xu, L. Liang, H. Ju, J. Zhu, Y. Pan, W. Yan, Y. Lin and Y. Xie, Journal of the American Chemical Society, 2017, 139, 18044-18051.
    93. Y.-L. Wang, Y. Tian, Z.-L. Lang, W. Guan and L.-K. Yan, Journal of Materials Chemistry A, 2018, 6, 21056-21063.
    94. T. Di, B. Zhu, B. Cheng, J. Yu and J. Xu, Journal of Catalysis, 2017, 352, 532-541.
    95. H. She, H. Zhou, L. Li, Z. Zhao, M. Jiang, J. Huang, L. Wang and Q. Wang, ACS Sustainable Chemistry & Engineering, 2019, 7, 650-659.
    96. 2D-Semiconductors.
    97. H. Graphene.
    98. V. D. Mote, Y. Purushotham and B. N. Dole, Journal of Theoretical and Applied Physics, 2012, 6, 6.
    99. G. K. Williamson and W. H. Hall, Acta Metallurgica, 1953, 1, 22-31.
    100. B. Ram and A. K. Singh, Physical Review B, 2017, 95, 075134.
    101. I. Shown, S. Samireddi, Y. C. Chang, R. Putikam, P. H. Chang, A. Sabbah, F. Y. Fu, W. F. Chen, C. I. Wu, T. Y. Yu, P. W. Chung, M. C. Lin, L. C. Chen and K. H. Chen, Nat Commun, 2018, 9, 169.
    102. A. L. Patterson, Physical Review, 1939, 56, 978-982.
    103. Y. B. Yang, J. K. Dash, A. J. Littlejohn, Y. Xiang, Y. Wang, J. Shi, L. H. Zhang, K. Kisslinger, T. M. Lu and G. C. Wang, Crystal Growth & Design, 2016, 16, 961-973.
    104. Y. Huang, E. Sutter, J. T. Sadowski, M. Cotlet, O. L. Monti, D. A. Racke, M. R. Neupane, D. Wickramaratne, R. K. Lake, B. A. Parkinson and P. Sutter, ACS Nano, 2014, 8, 10743-10755.
    105. X. Zhang, F. Meng, J. R. Christianson, C. Arroyo-Torres, M. A. Lukowski, D. Liang, J. R. Schmidt and S. Jin, Nano Letters, 2014, 14, 3047-3054.
    106. G. Ham, S. Shin, J. Park, H. Choi, J. Kim, Y.-A. Lee, H. Seo and H. Jeon, ACS Applied Materials & Interfaces, 2013, 5, 8889-8896.
    107. J. Yu, C.-Y. Xu, F.-X. Ma, S.-P. Hu, Y.-W. Zhang and L. Zhen, ACS Applied Materials & Interfaces, 2014, 6, 22370-22377.
    108. R. van Bremen, Q. Yao, S. Banerjee, D. Cakir, N. Oncel and H. J. W. Zandvliet, Beilstein J Nanotechnol, 2017, 8, 1952-1960.
    109. J. W. Chiou, J. C. Jan, H. M. Tsai, C. W. Bao, W. F. Pong, M.-H. Tsai, I.-H. Hong, R. Klauser, J. F. Lee, J. J. Wu and S. C. Liu, Applied Physics Letters, 2004, 84, 3462-3464.
    110. M. L. Baker, M. W. Mara, J. J. Yan, K. O. Hodgson, B. Hedman and E. I. Solomon, Coord Chem Rev, 2017, 345, 182-208.
    111. C. Branci, M. Womes, P. E. Lippens, J. Olivier-Fourcade and J. C. Jumas, Journal of Solid State Chemistry, 2000, 150, 363-370.
    112. I. I. Lefebvre, M. Lannoo, J. Olivier-Fourcade and J. C. Jumas, Phys Rev B Condens Matter, 1991, 44, 1004-1012.
    113. T. Glaser, B. Hedman, K. O. Hodgson and E. I. Solomon, Acc Chem Res, 2000, 33, 859-868.
    114. J. K. Kowalska, A. W. Hahn, A. Albers, C. E. Schiewer, R. Bjornsson, F. A. Lima, F. Meyer and S. DeBeer, Inorganic Chemistry, 2016, 55, 4485-4497.
    115. R. Zhao, T. Wang, M. Zhao, C. Xia, X. Zhao, Y. An and X. Dai, Physical Chemistry Chemical Physics, 2017, 19, 10470-10480.
    116. W.-J. Yin, B. Wen, S. Bandaru, M. Krack, M. W. Lau and L.-M. Liu, Scientific Reports, 2016, 6, 23298.
    117. C.-T. Yang, B. C. Wood, V. R. Bhethanabotla and B. Joseph, The Journal of Physical Chemistry C, 2014, 118, 26236-26248.
    118. R. P. Messmer and H. J. Freund, in Catalytic Activation of Carbon Dioxide, American Chemical Society, 1988, vol. 363, ch. 3, pp. 16-25.
    119. A. D. Handoko, F. Wei, Jenndy, B. S. Yeo and Z. W. Seh, Nature Catalysis, 2018, 1, 922-934.
    120. M. G. Albrecht and J. A. Creighton, Journal of the American Chemical Society, 1977, 99, 5215-5217.
    121. Z.-C. Zeng, S. Hu, S.-C. Huang, Y.-J. Zhang, W.-X. Zhao, J.-F. Li, C. Jiang and B. Ren, Analytical Chemistry, 2016, 88, 9381-9385.
    122. B. S. Yeo, S. L. Klaus, P. N. Ross, R. A. Mathies and A. T. Bell, Chemphyschem, 2010, 11, 1854-1857.
    123. Z. Zhang, S. Sheng, R. Wang and M. Sun, Analytical Chemistry, 2016, 88, 9328-9346.
    124. W. Akemann and A. Otto, Surface Science, 1993, 287-288, 104-109.
    125. H. J. Freund and M. W. Roberts, Surface Science Reports, 1996, 25, 225-273.
    126. R. G. Dickinson, R. T. Dillon and F. Rasetti, Physical Review, 1929, 34, 582-589.
    127. Y. Deng and B. S. Yeo, ACS Catalysis, 2017, 7, 7873-7889.
    128. G. Kumari, X. Zhang, D. Devasia, J. Heo and P. K. Jain, ACS Nano, 2018, 12, 8330-8340.
    129. J. Z. Ou, W. Ge, B. Carey, T. Daeneke, A. Rotbart, W. Shan, Y. Wang, Z. Fu, A. F. Chrimes, W. Wlodarski, S. P. Russo, Y. X. Li and K. Kalantar-Zadeh, ACS Nano, 2015, 9, 10313-10323.
    130. W.-J. Yan, D.-Y. Chen, H.-R. Fuh, Y.-L. Li, D. Zhang, H. Liu, G. Wu, L. Zhang, X. Ren, J. Cho, M. Choi, B. S. Chun, C. Ó. Coileáin, H.-J. Xu, Z. Wang, Z. Jiang, C.-R. Chang and H.-C. Wu, RSC Advances, 2019, 9, 626-635.
    131. Z. Qin, K. Xu, H. Yue, H. Wang, J. Zhang, C. Ouyang, C. Xie and D. Zeng, Sensors and Actuators B: Chemical, 2018, 262, 771-779.
    132. R.-J. Chang, H. Tan, X. Wang, B. Porter, T. Chen, Y. Sheng, Y. Zhou, H. Huang, H. Bhaskaran and J. H. Warner, ACS Applied Materials & Interfaces, 2018, 10, 13002-13010.
    133. Y. Tao, X. Wu, W. Wang and J. Wang, Journal of Materials Chemistry C, 2015, 3, 1347-1353.
    134. J. P. Perdew, K. Burke and M. Ernzerhof, Physical Review Letters, 1996, 77, 3865-3868.
    135. C. Fan, Y. Li, F. Lu, H.-X. Deng, Z. Wei and J. Li, RSC Advances, 2016, 6, 422-427.
    136. J. M. Wu and W. E. Chang, ACS Applied Materials & Interfaces, 2014, 6, 14286-14292.
    137. J. J. Barrett and A. Weber, J. Opt. Soc. Am., 1970, 60, 70-76.

    QR CODE