簡易檢索 / 詳目顯示

研究生: 李玥瑩
Lee, Moonwin
論文名稱: 聚雙甲基矽氧烷(PDMS)為彈簧之異質整合靜電式垂直梳狀致動器
A hybrid vertical comb-drive actuator supported by flexible poly-dimethylsiloxane (PDMS) suspensions
指導教授: 陳榮順
Chen, Rong-Shun
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2010
畢業學年度: 99
語文別: 中文
論文頁數: 65
中文關鍵詞: 垂直梳狀致動器異質整合PDMS高分子
外文關鍵詞: vertical comb drive, hybrid, PDMS, polymer
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要在發展高分子異質整合技術。希望提供一個採用現有製程技術,將低楊氏係數之高分子元件做為彈簧,搭載於高剛性之矽基致動結構,無需額外高分子製程再對準或接合於矽基結構,達到最大異質整合之目的。本研究以靜電式垂直梳狀致動器為例,展現此異質整合技術的可行性。在SOI晶圓正面,深蝕刻做好高分子PDMS彈簧母模;待PDMS填入母模後,再深蝕刻完成矽基梳狀致動器;最後於SOI晶圓背面,以深蝕刻做懸浮腔體。當移除犧牲氧化層,完成懸浮後,動子因自身重量而自然下墜。當動子重量與支撐動子的PDMS彈簧達到力平衡後,梳狀致動器自然達成初始垂直斷差。此製程能使異質整合同步完成,自我對準,亦無後續機制加工或是特殊元件設計造成段差。此元件將展現異質整合優點,因柔軟的PDMS連結矽基致動器後,有機械性質增益;矽基致動器因低剛性高分子做為彈簧,有大初始垂直斷差與低驅動電壓的增益。此外,PDMS較不利於水平作動,所以在垂直方向上,更能發揮特性,使致動器在低電壓輸入下得到高效能的垂直作動。製作之400/20 μm彈簧元件在45 Vdc下為2.985 μm的位移量(0.066 μm/Vdc),在25 Vac 3532.5 Hz為3.731 μm的位移量;200/25 μm彈簧元件在50 Vdc下為0.8741 μm的位移量(0.0174 μm/Vdc),在35 Vac 3537.5 Hz為2.116 μm的位移量。


    We introduced a hybrid PDMS-silicon electrostatic actuator with a large stroke under low driving voltages. The device features a staggered vertical comb-drive suspended by PDMS springs. Because of the flexibility of PDMS, an initial staggered displacement was naturally formed due to the self-weight of the device. Experimental results showed the combination of polymeric springs and silicon structures enabled the large stroke of 3.73 μm at 3.5 kHz. The presented heterogeneous integration technology improves the performance and may bring new functionalities to micro-systems.

    第一章 導論 8 1.1 研究背景與動機 8 1.2 文獻回顧 9 1.2.1 純矽基靜電式垂直梳狀致動器 9 1.2.2 靜電式梳狀致動器與高分子材料的異質整合 14 1.3 全文架構 20 第二章 靜電式垂直梳狀致動器設計 21 2.1 矽基梳狀致動器設計 22 2.2 高分子PDMS彈簧設計 25 2.3 ANSYS模擬 26 2.3.1 元件彈簧長寬關係 26 2.3.2 動子自重位移(Initial staggered displacement)模擬 29 2.3.3 自然共振頻(natural resonant frequency)模擬 31 第三章 製程與製程成果討論 32 3.1 光罩與製程 32 3.2 製程流程 33 3.3 高分子材料的選擇 35 3.4 製程成果 36 3.5 製程相關問題與討論 39 第四章 元件量測與討論 44 4.1 靜態量測 44 4.2 動態量測 46 4.3 數值計算、量測值、與模擬修正比較 50 第五章 結論與未來工作 57 5.1 結論 57 5.2 未來工作 58 參考文獻 62

    [1] D. Bachmann, S. Kühne, and C. Hierold, “MEMS scanning mirror supported by soft polymeric spring and actuated by electrostatic charge separation,” IEEE MEMS ‘07 Conference, Kobe, Japan, Jan. 21-25, 2007, pp. 723-726.
    [2] W. Tang, T. Nuyen, and R. Howe, “Laterally driven poly-silicon resonant icrostructures,” IEEE MEMS '89 Proceedings, Salt Lake City, Utah, USA, Feb. 20-22, 1989, pp. 20-22.
    [3] 丁志明等人,「微機電系統藝術與應用」,初版,行政院國科會精密儀器發展中心,民國九十二年。
    [4] A. Selvakumar, K. Najafi, W. H. Juan, and S. Pang, “Vertical comb array microactuators,” IEEE MEMS ‘95 Proceedings, Amsterdam, The Netherlands, Jan. 29-Feb. 2, 1995, pp. 43-45.
    [5] A. Selvakumar and K. Najafi, “Vertical comb array microactuators,” Journal of Microelectromechanical Systems, vol. 12, 2003, pp. 440-449.
    [6] J. Yeh, H. Jiang, and N. Tien, “Integrated polysilicon and DRIE bulk silicon icromachining for an electrostatic torsional actuator,” Journal of Microelectromechanical Systems, vol. 8, 1999, pp. 456-465.
    [7] J. Kim, H. Choo, L. Lin, and R. Muller, “Microfabricated torosional actuator using shelf-aligned plastic deformation,” Transducers' 03 Conference, Boston, USA, Jun. 8-12, 2003, pp. 1015-1018.
    [8] J. Kim, H. Choo, L. Lin, and R. Muller, “Microfabricated torsional actuators using self-aligned plastic deformation of silicon,” Journal of Microelectromechanical Systems, vol. 15, 2006, pp. 553-562.
    [9] D. Hah, S. Huang, J. Tsai, H. Toshiyoshi, and M. Wu, “Low-voltage, large-scan angle MEMS analog micromirror arrays with hidden vertical comb-drive actuators,” Journal of Microelectromechanical Systems, vol. 13, 2004, pp. 279-289.
    [10] J. Tsai, H. Chu, J. Hsieh, and W. Fang, “The BELST II process for a silicon high-aspect-ratio micromaching vertical comb actuator and its applications,” Journal of Micromechanics and Microengineering, vol. 14, 2004, pp. 235-241.
    [11] K. Jeong and L. Lee, “A novel microfabrication of a self-aligned vertical comb drive on a single SOI wafer for optical MEMS applications,” Journal of Micromechanics and Microengineering, vol. 15, 2005, pp. 277-281.
    [12] J. Chiou and C. Kuo, “The implementation of a novel magnified cascade configuration using a vertical electrostatic actuator,” IEEE Nanotechnology ’06 Conference, Cincinnati, Ohio, USA, July 17-20, 2006, pp. 913-916.
    [13] J. Chiou and C. Kuo, “Development of vertical electrostatic comb-drive actuator using magnified cascade configuration,” Japanese Journal of Applied Physics, vol. 46, 2007, pp. 6546-6549.
    [14] Y. Eun, H. Na, J. Choi, J. Lee, and J. Kim, “Angular vertical comb actuators assembled on-chip using in-plane electrothermal actuators and latching mechanisms,” Sensors and Actuators A : Physical, 2010, doi:10.1016/j.sna.2010.03.015.
    [15] J. Löetters, W. Olthuis, P. Veltink, and P. Bergveld, “Polydimethylsiloxane, a photocurable rubberelastic polymer used as spring material in micromechanical sensors,” Microsystem Technologies, vol.3, 1999, pp.64-67.
    [16] T. Fujita , K. Maenaka, and Y. Takayama, “Dual-axis MEMS mirror for large deflection-angle using SU-8 soft torsion beam,” Sensors and Actuators A : Physical, vol. 121, 2005, pp. 16-21.
    [17] Y. Zhao and T. Cui, “Fabrication of high-aspect-ratio polymer-based electrostatic comb drives using the hot embossing technique,” Journal of Micromechanics and Microengneering, vol. 13, 2003, pp. 430-435.
    [18] Y. Zhao and T. Cui, “SOI wafer mold with high-aspect-ratio microstructures for hot embossing process,” Microsystem Technologies, vol. 10, 2004, pp. 544–546.
    [19] W. Dai, K. Lian, and W. Wang, “Design and fabrication of a SU-8 based electrostatic microactuator,” Microsystem Technologies, vol. 13, 2007, pp. 271–277.
    [20] D. Bachmann, B. Schöberle, S. Kühne, Y. Leiner and C. Hierold, “Fabrication and characterization of folded SU-8 suspensions for MEMS applications,” Sensors and Actuators A : Physical, vol. 131, 2006, pp. 379-386.
    [21] J. Chung and W. Hsu, “Fabrication of a polymer-based torsional vertical comb drive using a double-side partial exposure method,” Journal of Micromechanics and Microengneering, vol. 18, 2008, pp. 1-7.
    [22] J. Chung and W. Hsu, “Fabrication of 3D photoresist microstructures for the polymer vertical comb drive,” Proceeding of NEMS ’07 Conference, Bangkok, Thailand, Jan. 12-19, 2007, pp. 634-638.
    [23] Y. Tung and K. Kurabayashi, ”A single-layer multiple degree-of-freedom PDMS-on-silicon dynamic focus micro-lens,” IEEE MEMS ‘06 Conference, Istanbul, Turkey, Jan.22-26, 2006, pp. 838-841.
    [24] P. Patterson, D. Hah, H. Nguyen, H. Toshiyoshi, R. Chao, and M. Wu, “A scanning micromirror with angular comb drive actuation,” IEEE MEMS ‘02 Conference, Las Vegas, Nevada, USA Jan. 20-24, 2002, pp. 544-547.
    [25] R. Craig Jr., “Mechanics of materials,” John Wiley & sons Inc., 1996, ISBN 0-471-59284-7.
    [26] D. Armani, C. Liu, and N. Aluru, “Re-configurable fluid circuits by PDMS elastomer micromachining,” IEEE MEMS '99 Conference, Orlando, Florida, USA, Jan.17-21, 1999, pp. 222-227.
    [27] Y. Tung and K. Kurabayashi, “A Single-Layer PDMS-on-Silicon Hybrid Microactuator With Multi-Axis Out-of-Plane Motion Capabilities—Part I: Design and Analysis,” Journal of Microelectromechanical Systems, vol. 14, 2005, pp. 548-557.
    [28] J. Garra, T. Long, J. Currie, T. Schneider, and R. White, “Dry etching of polydimethylsiloxane for micro fluidic systems,” Journal of Vacuum Science and Technology, vol. 20, 2002, pp. 975-982.
    [29] 黃道君和尤學一,“聚合物PDMS片表面特性的AFM和XPS初步研究”,新技術應用,第一期,2007年。
    [30] 謝哲偉,“BELST高深寬比微加工製程平台及其應用”,國立清華大學動力機械工程研究所博士論文,民國九十一年。
    [31] V. Jaecklint, C. Lindert, N. Rooijt, and J. Moret, “Micromechanical comb actuators with low driving voltage,” Journal of Micromechanics and Microengineering, vol. 2, 1992, pp. 250-255.
    [32] W. Eberhardt, T. Gerhäußer, M. Giousouf, H. Kück, R. Mohr, and D. Warkentin “Innovative concept for the fabrication of micromechanical sensor and actuator devices using selectively metallized polymers,” Sensors and Actuators A: Physical, vol. 97-98, 2002, p. 473–477.
    [33] J. Anderson, D. Chiu, R. Jackman, O. Cherniavskaya, J. McDonald, H. Wu, S. Whitesides, and G. Whitesides, “Fabrication of topologically complex tree-dimensional microfluidic Systems in PDMS by rapid prototyping,” Analytical Chemistry, vol. 72, 2000, pp. 3158-3164.
    [34] J. Lee, C. Park, and G. Whitesides, “Solvent compatibility of poly (dimethylsiloxane)-based microfluidic devices,” Analytical Chemistry, vol. 75, 2003, pp. 6544-6554.
    [35] Sunghoon Kwon and Luke P. Lee, “Micromachined transmissive scanning confocal microscope,” Optics Letters, vol. 29, 2004, pp. 706-708.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE