研究生: |
鄭穎鍾 Cheng, Ying-Chung |
---|---|
論文名稱: |
完備流形上的調和映射 A note on harmonic maps |
指導教授: |
宋瓊珠
Sung, Chiung-Jue |
口試委員: |
張德健
Chang, Der-Chen 王嘉平 Wang, Jia-ping |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 14 |
中文關鍵詞: | 調和映射 |
外文關鍵詞: | harmonic maps |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此篇論文中含有兩個主題,一是p-調和映射的凸集合叢簇性質,另一是在有Weighted Poincare'不等式的完備流形上的Lioville定理。
1.p-調和映射的凸集合叢簇性質:
在這篇論文中,我們介紹了從完備流形到Cartan-Hadamard的p-調和映射,並且估計其值域。我們也給出了相異massive集合最大數量的上界。
2.在有Weighted Poincare'不等式的完備流形上的Lioville定理:
令M是一個有下界Ricci曲率的完備非緊緻流形,N是一個有非正sectional曲率的完備流形。假設Weighted Poincare'不等式成立與Dirichlet能量函數有適當成長的話,我們證明了從M到N的調和映射之Liouville性質。
There are two topics in this paper. One is Convex Hull Property of p-harmonic maps, and the other is Liouville theorems on manifolds with weighted poincare' inequality.
1.Convex Hull Property Of P-harmonic Maps:
In this paper, we introduce the p-harmonic maps on complete manifolds to Cartan-Hadamard manifolds and estimate the image of the maps. We give the upper bound for the maximum number of disjoint massive sets.
2.Liouville Theorems On Manifolds With Weighted Poincare' Inequality:
Let M be a complete noncompact manifold with some Ricci curvature lower bound and N be a complete manifold with nonpositive sectional curvature. We prove the Liouville property on harmonic maps from M to N provided that the weighted Poincare' inequality holds and the Dirichlet energy function of the harmonic map has a proper growth.
1.Convex Hull Property Of P-harmonic Maps:
Y : S.T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228.
C : S.Y. Cheng, Liouville theorem for harmonic maps, Proc. Symp. Pure Math. 36 (1980), 147-151.
G : A. Grigor'yan, Dimensions of spaces of harmonic functions, Matem. Zametki. 48 (1990), 55-61.
H : B.Hua, Generalized Liouville theorem in nonnegatively curved Alexandrov spaces, Chin. Ann. Math. Ser. B 30 (2009), no. 2, 111-128.
H-L : Han, Q. and Lin, F. H., Elliptic Partial Differential Equations, Courant Lecture Notes in Mathematics, Vol. 1, A. M. S., Providence, RI, 1997.
J : Anand Arvind Joshi, Harmonic mappings between Riemannian manifolds. (2006)
E-O : P. Eberlein and B. O'Neill, Visibility manifolds, Pacific J. Math. 46 (1973), 45-110.
L : P. Li, Harmonic sections of polynomial growth, Math. Res. Letters 4 (1997) 35-44.
L-W : Peter Li, Jiaping Wang, Convex hull properties of harmonic maps, (1998).
L1 : L.Saloff-Coste, Uniformly elliptic operators on Riemannian manifolds. J. Differential Geom. 36 (1992), no. 2, 417-450.
2.Liouville Theorems On Manifolds With Weighted Poincare' Inequality:
Y : S.T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228.
C : S.Y. Cheng, Liouville theorem for harmonic maps, Proc. Symp. Pure Math. 36 (1980), 147-151.
Jo : Anand Arvind Joshi, Harmonic mappings between Riemannian manifolds. (2006)
P-R-S : Stefano Pigola, Marco Rigoli, Alberto G. Setti, Vanishing and Finiteness Results in Geometric Analysis: A Generalization of the Bochner Thechnique, Progr. Math. 266, Birkhhuser Basel, 2008.
N : N. Nakauchi, A Liouville type theorem for p-haromonic maps, Osaka J. Math. 35 (1998) 303-312.
F-Y : Hai-Ping Fu, Deng-Yun Yang, Vanishing Theorems On Complete Manifolds With Weighted Poincare' Inequality And Applications, Nahoya Math. J. 206 (2012), 25-27.
V : "Lectures on differential geometry"in Conference Proceedings and Lecture Notes in Geometry and Topology, I, International Press, Cambridge, 1994.
S-Y : R.M. Schoen, S.T. Yau, Harmonic maps and the topology of stable hypersurfaces and manifolds of nonnegative Ricci curvature, Comm. Math. Helv. 51 (1976) 333-341.
J : S.D. Jung, Harmonic maps of complete Riemannian manifolds, Nihonkai Math. J. 8 (1997) 147-154.