簡易檢索 / 詳目顯示

研究生: 鄭穎鍾
Cheng, Ying-Chung
論文名稱: 完備流形上的調和映射
A note on harmonic maps
指導教授: 宋瓊珠
Sung, Chiung-Jue
口試委員: 張德健
Chang, Der-Chen
王嘉平
Wang, Jia-ping
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 14
中文關鍵詞: 調和映射
外文關鍵詞: harmonic maps
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此篇論文中含有兩個主題,一是p-調和映射的凸集合叢簇性質,另一是在有Weighted Poincare'不等式的完備流形上的Lioville定理。
    1.p-調和映射的凸集合叢簇性質:
    在這篇論文中,我們介紹了從完備流形到Cartan-Hadamard的p-調和映射,並且估計其值域。我們也給出了相異massive集合最大數量的上界。

    2.在有Weighted Poincare'不等式的完備流形上的Lioville定理:
    令M是一個有下界Ricci曲率的完備非緊緻流形,N是一個有非正sectional曲率的完備流形。假設Weighted Poincare'不等式成立與Dirichlet能量函數有適當成長的話,我們證明了從M到N的調和映射之Liouville性質。


    There are two topics in this paper. One is Convex Hull Property of p-harmonic maps, and the other is Liouville theorems on manifolds with weighted poincare' inequality.
    1.Convex Hull Property Of P-harmonic Maps:
    In this paper, we introduce the p-harmonic maps on complete manifolds to Cartan-Hadamard manifolds and estimate the image of the maps. We give the upper bound for the maximum number of disjoint massive sets.

    2.Liouville Theorems On Manifolds With Weighted Poincare' Inequality:

    Let M be a complete noncompact manifold with some Ricci curvature lower bound and N be a complete manifold with nonpositive sectional curvature. We prove the Liouville property on harmonic maps from M to N provided that the weighted Poincare' inequality holds and the Dirichlet energy function of the harmonic map has a proper growth.

    1.Convex Hull Property Of P-harmonic Maps 2.Liouville Theorems On Manifolds With Weighted Poincare' Inequality

    1.Convex Hull Property Of P-harmonic Maps:
    Y : S.T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228.
    C : S.Y. Cheng, Liouville theorem for harmonic maps, Proc. Symp. Pure Math. 36 (1980), 147-151.
    G : A. Grigor'yan, Dimensions of spaces of harmonic functions, Matem. Zametki. 48 (1990), 55-61.
    H : B.Hua, Generalized Liouville theorem in nonnegatively curved Alexandrov spaces, Chin. Ann. Math. Ser. B 30 (2009), no. 2, 111-128.
    H-L : Han, Q. and Lin, F. H., Elliptic Partial Differential Equations, Courant Lecture Notes in Mathematics, Vol. 1, A. M. S., Providence, RI, 1997.
    J : Anand Arvind Joshi, Harmonic mappings between Riemannian manifolds. (2006)
    E-O : P. Eberlein and B. O'Neill, Visibility manifolds, Pacific J. Math. 46 (1973), 45-110.
    L : P. Li, Harmonic sections of polynomial growth, Math. Res. Letters 4 (1997) 35-44.
    L-W : Peter Li, Jiaping Wang, Convex hull properties of harmonic maps, (1998).
    L1 : L.Saloff-Coste, Uniformly elliptic operators on Riemannian manifolds. J. Differential Geom. 36 (1992), no. 2, 417-450.

    2.Liouville Theorems On Manifolds With Weighted Poincare' Inequality:
    Y : S.T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228.
    C : S.Y. Cheng, Liouville theorem for harmonic maps, Proc. Symp. Pure Math. 36 (1980), 147-151.
    Jo : Anand Arvind Joshi, Harmonic mappings between Riemannian manifolds. (2006)
    P-R-S : Stefano Pigola, Marco Rigoli, Alberto G. Setti, Vanishing and Finiteness Results in Geometric Analysis: A Generalization of the Bochner Thechnique, Progr. Math. 266, Birkhhuser Basel, 2008.
    N : N. Nakauchi, A Liouville type theorem for p-haromonic maps, Osaka J. Math. 35 (1998) 303-312.
    F-Y : Hai-Ping Fu, Deng-Yun Yang, Vanishing Theorems On Complete Manifolds With Weighted Poincare' Inequality And Applications, Nahoya Math. J. 206 (2012), 25-27.
    V : "Lectures on differential geometry"in Conference Proceedings and Lecture Notes in Geometry and Topology, I, International Press, Cambridge, 1994.
    S-Y : R.M. Schoen, S.T. Yau, Harmonic maps and the topology of stable hypersurfaces and manifolds of nonnegative Ricci curvature, Comm. Math. Helv. 51 (1976) 333-341.
    J : S.D. Jung, Harmonic maps of complete Riemannian manifolds, Nihonkai Math. J. 8 (1997) 147-154.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE