簡易檢索 / 詳目顯示

研究生: 周士富
Shih-Fu Chou
論文名稱: 氧化鐵奈米粒之合成與其表面改質
Synthesis and Surface Modification of Iron Oxide Nanoparticles
指導教授: 賴志煌
Chih-Huang Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 74
中文關鍵詞: 奈米粒氧化鐵量子點表面改質
外文關鍵詞: nanoparticles, iron oxide, quantum dot, surface modification
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    氧化鐵奈米粒之合成與其表面改質

    藉由高溫的有機溶液法我們可以製備出粒徑六至十二奈米大小的氧化鐵奈米粒。這是利用改變合成的條件參數或是種晶促進長成法(seed-mediated growth)的方法來達成。剛合成出的氧化鐵奈米粒是屬於親油性的粒子,而我們可以經由表面改質的方法進一步的將其改為親水性的粒子。表面改質後的粒子在室溫下,還是具有其改質之前超順磁的性質,但是改質後的阻隔溫度(blocking temperature)卻與改質前的不同。此外我們還成功的合成出CdSe@ZnS此種量子點。所合成出量子點可以和表面改質後而具硫醇基的氧化鐵奈米粒作一個接合(coupling)的動作。由於量子點是具光學特性的材料,並配合上氧化鐵的磁性質,最後所得到的是同時具有光學及磁性的複合材料,而此種材料有機會拿來作生醫上的應用。


    Abstract
    Synthesis and Surface Modification of Iron Oxide Nanoparticles

    Iron oxide nanoparticles were synthesized via hot organic solvent system. The particles’ sizes can be tuned from 6 nm to 12 nm by varying synthetic conditions or seed-mediated growth. The as-synthesized particles are hydrophobic and can be further modified to be hydrophilic ones by surface modifications. The modified particles maintain their superparamagnetic properties under room temperature while the blocking temperature varies after surface modifications. Also we have successfully synthesized CdSe@ZnS quantum dots. The as-synthesized quantum dots are coupled with thiol-functionalized iron oxide nanoparticles. Since QDs are well known with their optical properties and iron oxide nanopartilces are magnetic materials. The resulting nanocomposites are bifunctional with magnetic and optical properties and may have an opportunity for biomedical applications.

    Contents Chapter 1 Introduction…………………………………………………1 1.1 Motivation……………………………………………………………1 Chapter 2 Background………………………………………………….3 2.1 Preparation of Uniform Particles by Wet Chemical Synthesis……….3 2.2 Introduction and Characteristics of Magnetic Nanoparticles………...5 2.2.1 Single Domain…………………………………………………….6 2.2.2 Superparamagnetism……………………………………………...7 2.2.3 Surface Anisotropy………………………………………………..8 2.3 Introduction to Iron Oxide……………………………………….......9 2.3.1 Applications of Iron Oxide………………………………………10 2.3.1.1 Drug Delivery………………………………………………...11 2.3.1.2 Separation…………………………………………………….11 2.3.1.3 Hyperthermia…………………………………………………11 2.3.1.4 Magnetic Resonance Imaging (MRI)………………………...12 2.4 Synthetic Methods of Iron Oxide nanoparticles…………………….13 2.5 Introduction to Quantum Dots………………………………………17 2.5.1 Characteristic: Quantum Size Effect………………………….…18 2.5.2 Advantages of Quantum Dots……………………………………20 2.5.3 Core-Shell structure……………………………………………...20 2.5.4 Synthetic methods……………………………………………….22 2.5.5 Applications of Quantum Dots…………………………………..23 2.6 Surface Modifications……………………………………………….25 2.6.1 Surface Modification by Adding New Materials………………...25 2.6.2 Oil-water Phases Transferring…………………………………...29 Chapter 3 Synthetic Methods and Analysis Technique……………...32 3.1 Experimental Flowchart…………………………………………….32 3.2 Synthetic Methods…………………………………………………..32 3.2.1 The Apparatus of Syntheses……………………………………..33 3.2.2 Reagent List……………………………………………………...33 3.2.3 Details of Experiment Procedures……………………………….34 3.2.3.1 Synthesis of Iron Oxide………………………………………35 3.2.3.2 Surface modification of Iron Oxide…………………………..35 3.2.3.3 Synthesis of CdSe@ZnS..........................................................36 3.2.3.4 Coupling between Iron Oxide and CdSe@ZnS........................37 3.3 Analysis Equipments………………………………………………..37 3.3.1 X-Ray Diffraction (XRD)………………………………………..37 3.3.2 Transmission Electron Microscopy (TEM)……………………...39 3.3.3 Vibrating Sample Magnetometer (VSM)……………………..…40 3.3.4 Superconducting Quantum Interference Device (SQUID)………41 3.3.5 Infrared Spectroscopy (IR)………………………………………42 3.3.6 UV-Visible Absorption Spectroscopy (UV-Vis)…………………43 3.3.7 Photoluminescence Spectroscopy (PL)………………………….44 Chapter 4 Results and Discussion…………………………………….45 4.1 Synthesis, Surface modification, and Magnetic Properties of Iron Oxide Nanoparticles……………………………………….………..45 4.1.1 Controlling Sizes of Iron Oxide Nanoparticles………………….45 4.1.1.1 Controlling the Particles’ Sizes by Changing Different Amounts of Surfactants………………………………………………..45 4.1.1.2 Controlling of Particles’ Sizes by Seed-mediated Growth…...48 4.1.2 Surface Modification of Iron Oxide Nanoparticles……………...49 4.1.3 Characterization of Iron Oxide Nanoparticles…………………...52 4.1.3.1 XRD Analyses………………………………………………..52 4.1.3.2 VSM Measurements………………………………………….54 4.1.3.3 SQUID Measurements………………………………………..55 4.1.3.4 IR Analyses…………………………………………………...57 4.2 Synthesis and Characterization of Quntum Dots (CdSe, CdSe@ZnS)....................................................................................... 58 4.2.1 PL and UV-Vis Analyses………………………………………...59 4.2.2 TEM and EDS Analyses of CdSe and CdSe@ZnS.......................61 4.2.3 PL Spetra of the CdSe and CdSe@ZnS.........................................64 4.3 Results of Coupling between Iron Oxide Nanoparticles and CdSe@ZnS Dots…………………………………………………….64 Chapter 5 Conclusions………………………………………………...69 References…………………………………………………...………….70 List of figures Figure 2.1 Mechanisms of formation of uniform particles……………………………3 Figure 2.2 Size separating process……………………………………………………5 Figure 2.3 Relations between total energy and sizes of single and multi domain…….7 Figure 2.4 Relations between grain size and coercivity………………………………8 Figure 2.5 Effects of competition between surface anisotropy (Ks) and magneto-crystalline (Ku). Ku/Ks = (a) 1 (b) 10 (c) 40 (d) 60………..……..9 Figure 2.6 Schematic representation of magnetic separation………………………..11 Figure 2.7 MRI images of cancer-targeting iron oxide nanoparticles……………….13 Figure 2.8 TEM images of 2-D hexagonal assembly of γ-Fe2O3 nanoparticles….….14 Figure 2.9 TEM images of (a) 6 nm and (b) 12nm Fe3O4 nanoparticles…………….15 Figure 2.10 TEM images of different shapes of γ- Fe2O3 nanoparticles…………….16 Figure 2.11 TEM images of Fe3O4 nanoparticles with sphere (left) and rod/wire (right) shape…………………………………………………………………...16 Figure 2.12 TEM images of large-scale synthesis of iron oxide nanoparticles. Note that the scale bar is 200nm……………………………………………...17 Figure 2.13 Schematic representation of continuous state to discrete energy states...20 Figure 2.14 CdSe evolution of photoluminescence spectra with ZnSe coating……..21 Figure 2.15 Applications of quantum dots in bioimaging…………………………...24 Figure 2.16 TEM images of Co@CdSe.......................................................................26 Figure 2.17 TEM images of (a) FePt-CdS (b) FePt-ZnS…………………………….26 Figure 2.18 TEM images of combining iron oxide nanoparticles with CdSe@ZnS...28 Figure 2.19 TEM images of (left) FePt@Fe3O4 and (right) Pt@Fe2O3 core shell structures………………………………………………………….…….29 Figure 2.20 Schematic representations of ligand exchage by (right) ionic group and (left) thiol group……………………………………………………..….30 Figure 2.21 TEM images of water-soluble particles by amphiphilic polymer wrapping on the original ones……………………………………………………..31 Figure 3.1 The apparatus of synthesis……………………………………………….33 Figure 3.2 XRD spectrometer……………………………………………………….38 Figure 3.3 The equipment of TEM…………………………………………………..40 Figure 3.4 Scheme of VSM………………………………………………………….41 Figure 3.5 figure of SQUID…………………………….……………………………42 Figure 3.6 The absorption of IR spetra………………………………………….…...43 Figure 4.1 TEM images and histogram of different amounts of surfactants (a) 3 mmole, (b) 0.3 mmole (c) 0.16 mmole, and (d) 0.08 mmole…………….47 Figure 4.2 TEM images of seed-mediated growth of iron oxide nanoparticles (a) once seed-mediated growth with size of 10.0 nm (b) twice seed-mediated growth with size of 12.3nm………………………………………………49 Figure 4.3 TEM images of different siezs of iron oxide nanoparticles after surface modification (a) 7.5 nm (b) 10.3 nm (c) 12.3 nm………………………...51 Figure 4.4 Image of water-soluble and oil-soluble iron oxide nanoparticles. The upper phase is hexane and the bottom phase is water…………………………..52 Figure 4.5 XRD spetra of iron oxide nanoparticles synthesized by seed-mediated growth with the size of (a) ~8nm (b) ~10nm (c) ~12nm. The particles are dispersed in hexane……………………………….……53 Figure 4.6 XRD spetra of iron oxide nanoparticles after surface modification for the size of (a) ~8nm (b) ~10nm (c) ~12nm. The particles are dispersed in water……………………………………………..……………………….53 Figure 4.7 Hysteresis loops of iron oxide nanoparticles with size of (a) ~8nm (b) ~10nm (c) ~12nm at room temperature. The left hand and right hand side represent before and after surface modifications………………………...55 Figure 4.8 ZFC and FC curves of (a) ~8nm and (b) ~12nm. The left hand and right hand side represent before and after surface modifications…………….57 Figure 4.9 IR analyses of (a) as-prepared and (b) DMSA coated particles………….58 Figure 4.10 Photoluminescence of CdSe dots with spectral range from different sizes. Excitation is at 366nm ultraviolet light from a hand-held UV lamp……59 Figure 4.11 PL spetra of CdSe obtained from different time intervals……………....60 Figure 4.12 UV-Vis spetra of CdSe obtained from different time intervals………....61 Figure 4.13 (a) HRTEM of CdSe with diameters around 3.3nm and (b) TEM images of CdSe@ZnS with diameters around4.1nm……………………………62 Figure 4.14 EDS spetra of (a) CdSe (b) CdSe@ZnS..................................................63 Figure 4.15 PL spetra of CdSe and CdSe@ZnS..........................................................64 Figure 4.16 TEM images of (a) magnetic nanoparticles coupling with QDs and (b) a local magnified image…………………………………………………..65 Figure 4.17 EDS spetra of figure 4.16(a)…………………………………………....66 Figure 4.18 Images of magnetic nanocomposites attracted by a permanent magnet..67 Figure 4.19 PL spectra of progression from CdSe@ZnS to FeOx+CdSe@ZnS coupling.…………………………………………...…….……………...68

    References

    1 Kim, H.; Achermann, M.; Balet, L. P.; Hollingsworth, J. A.; Kilmov, V. I. J. Am. Chem. Soc. 2005, 127, 544-546
    2 Gu, H.; Zheng, R.; Liu, H.; Zhange, X.; Xu, B. J. Am. Chem. Soc. 2004, 126, 5664-5665
    3 Dongea, C.D; Liljeroth.P.; Vanmaekelbergh. D. Small 2005, 1, 1152-1162
    4 Jartaj, P.; Morales, M. D. P.; Verdaguer, V. V.; Carreno, T. G.; Serna, C. J. J. Phys. D: Appl. Phys. 2003, 36, 182-197
    5 Pellegrino, T.; Kudera, S.; Liedl, T.; Javier, A. M.; Manna, L.; Parak, W. J. Small 2005, 1, 48-62
    6 Lamer, V. K.; Dinegar, R. H. J. Am. Chem. Soc. 1950, 72, 4847
    7 Catherine, C. B.; Adam, S.G. C. J. Phys. D: Appl. Phys. 2003, 36, 198-206
    8 何建新 國立清華大學碩士論文
    9 Frenkel, J.; Dorfmna, J. Nature 1930, 126, 274
    10 Neel, L. C. R. Acad. Sci. 1949, 228, 664
    11 Labaye, L.; Crisan, O.; Berger, L.; Grenche, J. M.; Coey, J. M. J. Appl. Phys. 2002, 91, 8751
    12 Huh, Y.-M.; Jun, Y.-w.; Song, H.-T.; Kim, S.; Choi, J.-s.; Lee, J.-H.; Yoon, S.; Kim, K.-S.; Shin, J.-S.; Suh, J.-S.; Cheon, J. J. Am. Chem. Soc 2005, 127, 12387-12391
    13 Song, H.-T.; Choi, J.-s.; Huh, Y.-M.; Kim, S.; Jun, Y.-w.; Suh, J.-S.; Cheon, J. J. Am. Chem. Soc. 2005, 127, 9992-9993
    14 Sugimoto, T.; Matijevic, E. J.Colloid Interface Sci, 1980, 74, 227
    15 Kang, Y. S.; Rabolt, J. F.; Stroeve, P. Chem Mater. 1996, 8, 2209-2211
    16 Viau, G.; Fievet-Vincent, F.; Flevet, F. J. Mater. Chem. 1996, 6, 1047
    17 Hyeon, T.; Lee, S. S.; Park, J.; Chung, Y.; Na, H. B. J. Am. Chem. Soc. 2001, 123 , 12798-12801
    18 Sun, S.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G. J. Am. Chem. Soc. 2004, 126, 273-279
    19 Cheon, J.; Kang, N.-J.; Lee, S.-M.; Lee, J.-H.; Yoon, J.-H.; Oh, S. J.J. Am. Chem. Soc. 2004, 126, 1950-1951
    20 Jana, N. R.; Chen, Y.; Peng, X. Chem. Mater. 2004, 16, 3931-3935
    21 Park, J.; An, K.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T. Nature Materials 2004, 3, 891-895
    22 Colloids and colloid assemblies, edited by Frank Caruso Wiley-VHC Chapter 16
    23 Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8076-8715
    24 Alivisatos, A. P. J. Phys. Chem. 1996, 100, 13226-13239
    25 Kilmov, V. I. Los Alamos Science, 2003, 214-220
    26 Wang. Y.; Herron, N. J. Phys. Chem. 1991, 95, 525-532.
    27 Murphy, G. J. Analytic Chemistry, 2002, 512-526
    28 Gerion, D.; Pinaud, F.; Williams, S. C.; Parak, W. J.; Zanchet, D.; Weiss, S.; Alivisatos, A. P. J. Phys. Chem. B. 2001, 105, 8861-8871
    29 Reiss, P.; Bleause, J.; Pron, A. Nano Lett. 2002, 7, 781-784
    30 Qian, C.; Kim, F.; Ma, L,; Tsui F.; Yang, P.; Liu, J. J. Am. Chem. Soc. 2004, 126, 1195-1198
    31 Qu, L.; Peng, X. J. Am. Chem. Soc. 2002, 124, 2049-2055
    32 William, W.; Peng, X. Angew. Chem. Int. Ed. 2002, 41, 2368-2371
    33 Schlamp, M. C.; Peng, X.; Alivisatos, A. P.; J. Appl. Phys. 1997, 82, 5837-5842
    34 Gaponic, N. P.; Talapin, D. V.; Rogach, A. L.; Eychmuller, A. J. Mater. Chem. 2000, 10, 2163-2166
    35 Vogel, R.; Hoyer, P.; Weller, H. J. Phys. Chem. 1994, 98, 3183-3188
    36 Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J.J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Science 2005, 307, 538-544
    37 Jr, M. B.; Moronne, M.; Gin, P.; Weiss.S.; Alivisatos, A.P. Science 1998, 281, 2013-2015
    38 Chan, W. C. W.; Nie,S. Science 1998, 281, 2016-2018
    39 Gu, H.; Zheng, R.; Liu, H.; Zhange, X.; Xu, B. Small 2005, 1, 402-406
    40 Lu, Y.; Yin, Y.; Mayers, B. T.; Xia, Y. Nano Lett. 2002, 3, 183-186
    41 Kim, J.; Lee, J. E.; Lee, J.; Yu, J. H.; Kim, B. C.; An, K.; Hwang, Y.; Shin, C.-H.; Park, J.-G.; Kim, J.; Hyeon, T. J. Am. Chem. Soc. 2006, 128, 688-689
    42 Yi, D. K.; Selvan, S. T.; Lee, S. S.; Papaefthymiou, G. C.; Kundaliya, D.; Ying, J. Y. J. Am. Chem. Soc. 2005, 127, 4990-4991
    43 Santra, S.; Bagwe, R. P.; Dutta, D.; Stanley, J. T.; Walter, G. A.; Tan, W.; Moudgil, B. M.; Mericle, R.A. Adv. Mater. 2005, 17, 2165-2169
    44 Mulder, W. J. M.; Koole, R.; Brandwijk, R. J.; Storm, G.; Chin, P. T. K.; Strijkers, G. J.; de Mello Donega, C.; Nicolay, K.; Griffioen, A. W.Nano Lett. 2006, 1, 1-6
    45 Wang, D.; He, J.; Rosenzweig, N.; Rosenzweig, Z. Nano Lett. 2004, 3, 409-413
    46 Zeng, H.; Li, J.; Wang, Z. L.; Liu, J. P.; Sun, S. Nano Lett. 2004, 1, 187-190
    47 Zeng, H.; Li, J.; Wang, Z. L.; Liu, J. P.; Sun, S. Nature 2002, 28, 395-398
    48 Teng, X.; Yang, H. J. Am. Chem. Soc. 2003, 125, 14559-14563
    49 Fauconnier, N.; Pons, J. N.; Roger, J.; Bee, A. J. Colloid Interface Sci. 1997, 194, 427-433
    50 Pellegrino, T.; Manna, L.; Kudera, S.; Liedl, T.; Koktysh, D.; Rogach, A. L.; Keller, S.; Radler, J.; Natile, G.; Parak, W. J. Nano Lett. 2004, 4, 703-707
    51 Lin, P. C.; Chou, P. H.; Chen, S. H.; Liao, K. L.; Wang, K. Y.; Chen, Y. J.; Lin, C.C. small 2006, 4, 485-489
    52 Chen, C. Y.; Cheng C. T.; Lai, C. W.; Wu, P. W.; Wu, K. C.; Chou, P. T.; Chou, Y. H.; Chiu H. T. Chem Commun. 2006, 3, 263-265
    53 吳宗峰 國立清華大學碩士論文
    54 Tzitzios, V.; Niarchos, D.; Gjoka, M.; Boukos, N.; Petridis, D. J. Am. Chem. Soc. 2005, 127, 13756-13757
    55 Rondinone, A. J.; Samia, A. C. S.; Zhang, Z. J. J. Phys. Chem. B. 1999, 103, 6876-6880
    56 Wang, Y.; Tang, Z.; Correa-Duarte, M. A.; Pastoriza-Santos, I.; Giersig, M.; Kotov, N. A.; Liz-Marzan, L. M. J. Phys. Chem. B. 2004, 108, 15461-15469
    57 Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. J. Phys. Chem. B. 1997, 101, 9463-9475
    58 Yu, H.; Chen, M.; Rice, P. M.; Wang, S. X.; White, R. L.; Sun, S. Nano Lett, 2005, 5, 379-382
    59 Wuister, S. F.; de Mello Donega, C.; Meijerink, A. J. Phys. Chem. B. 2004, 108, 17393-17397

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE