簡易檢索 / 詳目顯示

研究生: 張皓
論文名稱: 動力學研究銅胺基酸活化過氧化氫中pH與有機酸效應
Kinetic study of the effects of pH and organic acid on the activation of hydrogen peroxide catalyzed by Copper(II) amino acid complexes
指導教授: 吳劍侯
Wu, Chien-Hou
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 46
中文關鍵詞: 銅錯合物過氧化氫胺基酸活性氧化物種2-甲喹啉
外文關鍵詞: Copper complex, Hydrogen peroxide, Amino acid, Reactive oxygen species, Quinaldine blue
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用銅胺基酸錯合物,於25oC的磷酸緩衝溶液中活化過氧化氫,並偵測反應中的2-甲喹啉藍(QB)的初始氧化速率來探討銅錯合物活化過氧化氫效率。本實驗透過改變pH及活性氧化物種抑制劑的添加,了解過氧化氫活化系統的反應機制及其主要活性氧化物種。實驗結果發現,在以銅胺基酸錯合物活化過氧化氫的系統中,銅胺基酸錯合物可有效增加過氧化氫解離常數Ka,因此反應效率隨pH值上升而增加。此外,透過有機酸類抑制劑的添加,發現其抑制效果符合Non-competitive 的抑制模型,再藉由抑制劑與一價銅生成關係,推論LCu(I)OOH•為系統中主要的活性氧化物種,造成後續QB的氧化反應。


    目錄 中文摘要………………………………………………………………...…………….I 英文摘要……………………………………………………………………………...II 誌謝…………………………………………………………………………………..III 目錄…………………………………………………………………………………..IV 圖目錄………………………………………………………………………………..VI 表目錄……………………………………………………………………….……...VII 附錄目錄………………………………………………………………….……......VIII 第一章 前言………………………………………...…………………....…………1 1.1 簡介…………………………………………………………………………..1 1.2 研究目的及動機……….………………………………….………………….1 第二章 文獻回顧………………………..…………….…………………………….3 2.1 H2O2的金屬活化作用……………..………………………………………….3 2.2 Fenton 反應/Fenton-like 反應…………..…………………………………….4 2.3 銅的介紹………………………………….…………………………………....5 2.4 銅離子╱銅錯合物的Fenton-like反應-工業製程與環境系統………………6 2.5銅離子╱銅錯合物的Fenton-like反應-銅與胺基酸之相關研究…………….6 2.6 胺基酸的介紹………………………………………………………………….7 2.7 實驗原理介紹………………………………………………………………….9 2.7.1銅胺基酸活化H2O2………………………………………………………..9 2.7.2 分子吸收光譜法…………………………………………………………..9 2.7.3 Quinaldine blue的介紹…………………………………………………...10 2.7.4 銅胺基酸錯合物活化H2O2反應動力學………………………………...11 第三章 實驗方法……….………………………………………...……………..…13 3.1實驗裝置…………..……………………………………...………………..…13 3.1.1 紫外可見光譜儀(UV-Vis spectrometer)…….……….……………....….13 3.1.2 pH meter………………………...………….………………..………….13 3.1.3 離子層析儀(Ion chromatography)………...……………………..………13 3.2 實驗藥品………………………...………………………...………..………...14 3.3 實驗流程……………………………………………………………………...15 3.3.1 母液配製…………………………………………………………………15 3.3.2 樣品配製…………………………………………………………………15 3.3.3 使用UV/Vis觀察反應速率……………………………………..………16 3.3.4 初始速率決定方法…………………………..................………..………16 3.4 一價銅的量測………………………………………………………………...19 3.5 實驗計算軟體………………………………………………………………...20 3.5.1 MINTEQ………………………………………………………………….20 3.5.2 NIST46.4 熱力學資料庫………………………………………………...21 第四章 結果與討論…………………………...………..………………………….23 4.1銅濃度之影響…..……...………..……………….……………………………23 4.2 H2O2濃度之影響……………………………………………………………...24 4.3 pH值的影響……………………………...………..………………………..…26 4.4 有機酸分子與金屬螯合劑的影響………………...………..…………..……30 4.5 NH4+的量測……...…………………………….……..……………………….37 4.6 反應機制探討………………………..……...………..………………………37 第五章 結論....................……………………...………..………………………….40 第六張 未來展望…………………………………………………………………..40 參考文獻…………………………...………..……………………………………….41 附錄……………………...………..……………………………………………………i 圖目錄 圖2-1 QB化學結構圖…………………………………………………………….10 圖2-2 Michaelis-Menton equation曲線圖…...………..…………………………..12 圖3-1 QB分解光譜圖………...………..………………………………………….16 圖3-2 QB吸收值衰減圖……….………..………………………………………...17 圖3-3 QB衰減初始速率決定圖……...……..…………………………………….18 圖3-4 QB檢量線………...………..……………….………………………………18 圖3-5 Cu(I)加Bathocuproine於484 nm出現吸收峰..………………………........19 圖3-6 Minteq模擬不同pH值環境下改變Gly濃度對銅物種分布之影響...........20 圖3-7 Nist46.4中Cu與Alanine 之錯合常數..…………….………………........22 圖4-1 銅濃度對QB降解速率的影響……..…...……..……..................................23 圖4-2 H2O2濃度對QB降解速率的影響….……………………………………...24 圖4-3 利用4-1式計算銅胺基酸錯合物(Gly)之kcat, Km………………………...25 圖4-4 pH對反應效率影響圖.…....……………………………………..................26 圖4-5 利用4-7式計算銅胺基酸錯合物(Gly)之k’, Ka……..….…..…………….28 圖4-6 有機酸對反應速率的影響.………………………..…………………….....30 圖4-7 胺基酸與雙胺類對反應速率的影響……………………..………..………31 圖4-8(a) 乙二酸的抑制……………………………..……………...………..……...32 圖4-8(b) 丙二酸的抑制.…………………………………………………………....32 圖4-8(c) 檸檬酸的抑制.……..………………...……………………………….…...33 圖4-8(d) EDTA的抑制.……………………...…................................................…...33 圖4-8(e) Gly的抑制…………………………………………………………………34 圖4-8(f) 乙二胺的抑制…………………………………………………………..…34 圖4-9 non-competitive 反應機制示意圖..………………………………………….35 圖4-10 抑制劑對一價銅生成的影響..…….…..……….…………………………..36 表目錄 表2-1 胺基酸基本性質介紹………………….……..………..…………………….7 表3-1 離子層析儀儀器設定條件....…………………..………..………………....14 表4-1 銅胺基酸錯合物之k’與pKa值..………..…………………………………26 表4-2 抗氧化劑對QB分解速率影響……………...……………………………...36 附錄目錄 銅胺基酸錯合物活化反應之k’與Ka………………………………………………...i 1. Ala…………………………...................................................………………………i 2. Arg………………………………..................................................................………ii 3. Asp…………………………………………………………………………………iii 4. Glu………...................................................……………………………………......iv 5. His……………………………………………………..……………………….…...v 6. Ile…………...............................................................………………………….…...vi 7. Leu………………….....................................................…………………………..vii 8. Met………………………………………………………………………………..viii 9. Phe................................................................…………………………………….…ix 10. Pro…………………………………………………………………………………x 11. Ser……………....................................................................…………………..…..xi 12. Val…………………………………………………………………..……………xii 13. Asn……………………………………...................................................……….xiii 14. Gln………………………………...................................................................…..xiv 15. Lys…………..............................................................…………………………....xv 16. Thr…………………………....................................................……….................xvi 17. Trp…………………………...................................................................……….xvii 18. Tyr…………..............................................................………………………….xviii 19. Gly…………………………………....................................................………….xix

    參考文獻:
    Aksu, S.; Wang, L.; Doyle, F. M., Effect of Hydrogen Peroxide on Oxidation of Copper in CMP Slurries Containing Glycine. J. Electrochem. Soc. 2003, 150, G718-G723.
    An, Y. J.; Carraway, E. R., PAH Degradation by UV/H2O2 in Perfluorinated Surfactant Solutions. Water Res. 2002, 36, 309-314.
    Baldrian, P.; Cajthaml, T.; Merhautova, V.; Gabriel, J.; Nerud, F.; Stopka, P.; Hruby, M.; Benes, M. J., Degradation of Polycyclic Aromatic Hydrocarbons by Hydrogen Peroxide Catalyzed by Heterogeneous Polymeric Metal Chelates. Appl. Catal. B-Environ. 2005, 59, 267-274.
    Bar-Or, D.; Rael, L. T.; Lau, E. P.; Rao, N. K. R.; Thomas, G. W.; Winkler, J. V.; Yukl, R. L.; Kingston, R. G.; Curtis, C. G., An Analog of The Human Albumin N-terminus (Asp-Ala-His-Lys) Prevents Formation of Copper-induced Reactive Oxygen Species. Biochem. Biophys. Res. Commun. 2001, 284, 856-862.
    Cai, R. X.; Kubota, Y.; Fujishima, A., Effect of Copper Ions on The Formation of Hydrogen Peroxide from Photocatalytic Titanium Dioxide Particles. J. Catal. 2003, 219, 214-218.
    Campanella, L.; Battilotti, M.; Lecce, R., Protective Action of Antioxidants Against Amino Acids Degradation Caused by Free Radicals. Int. J. Environ. Health 2007, 1, 98-119.
    Ciesla, P.; Kocot, P.; Mytych, P.; Stasicka, Z., Homogeneous Photocatalysis by Transition Metal Complexes in The Environment. J. Mol. Catal. A-Chem. 2004, 224, 17-33.
    Deschamps, P.; Kulkarni, P. P.; Gautam-Basak, M.; Sarkar, B., The Saga of Copper(II)-L-histidine. Coord. Chem. Rev. 2005, 249, 895-909.

    Duesterberg, C. K.; Waite, T. D., Process Optimization of Fenton Oxidation Using Kinetic Modeling. Environ. Sci. Technol. 2006, 40, 4189-4195.
    Dunford, H. B., Oxidations of Iron(II)/(III) by Hydrogen Peroxide: from Aquo to Enzyme. Coord. Chem. Rev. 2002, 233, 311-318
    ElJammal, A.; Templeton, D. M., Iron-hydroxypyridone Redox Chemistry: Kinetic and Thermodynamic Limitations to Fenton Activity. Inorg. Chim. Acta 1996, 245, 199-207.
    Ensing, B.; Buda, F.; Baerends, E. J., Fenton-like Chemistry in Water: Oxidation Catalysis by Fe(III) and H2O2. J. Phys. Chem. A 2003, 107, 5722-5731.
    Feng, J. Y.; Hu, X. J.; Yue, P. L., Degradation of Salicylic Acid by Photo-assisted Fenton Reaction Using Fe Ions on Strongly Acidic Ion Exchange Resin as Catalyst. Chem. Eng. J. 2004, 100, 159-165.
    Ghiselli, G.; Jardim, W. F.; Litter, M. I.; Mansilla, H. D., Destruction of EDTA Using Fenton and Photo-Fenton-like Reactions under UV-A Irradiation. J. Photochem. Photobiol. A-Chem. 2004, 167, 59-67.
    Goldstein, S.; Meyerstein, D., Comments on The Mechanism of The "Fenton like" Reaction. Accounts Chem. Res. 1999, 32, 547-550.
    Hanaoka, S.; Lin, J. M.; Yamada, M., Chemiluminescence Behavior of The Decomposition of Hydrogen Peroxide Catalyzed by Copper(II)-amino acid Complexes and Its Application to The Determination of Tryptophan and Phenylalanine. Anal. Chim. Acta 2000, 409, 65-73.
    Hariharaputhiran, M.; Zhang, J.; Ramarajan, S.; Keleher, J. J.; Li, Y. Z.; Babu, S. V., Hydroxyl Radical Formation in H2O2-amino acid Mixtures and Chemical Mechanical Polishing of Copper. J. Electrochem. Soc. 2000, 147, 3820-3826.

    Kato, Y.; Kitamoto, N.; Kawai, Y.; Osawa, T., The hydrogen peroxide/copper ion system, but not other metal-catalyzed oxidation systems, produces protein-bound dityrosine. Free Radical Biol. Med. 2001, 31, 624-632.
    Kremer, M. L., The Fenton Reaction. Dependence of The Rate on pH. J. Phys. Chem. A 2003, 107, 1734-1741.
    Kremer, M. L., Promotion of The Fenton Reaction by Cu2+ Ions: Evidence for Intermediates. Int. J. Chem. Kinet. 2006, 38, 725-736.
    Li, J. M.; Meng, X. G.; Hu, C. W.; Du, J.; Zeng, X. C., Oxidation of 4-chlorophenol catalyzed by Cu(II) complexes under mild conditions: Kinetics and mechanism. J. Mol. Catal. A: Chem. 2009, 299, 102-107.
    Lin, T. Y.; Wu, C. H., Activation of Hydrogen Peroxide in Copper(II)/Amino Acid/H2O2 Systems: Effects of pH and Copper Speciation. J. Catal. 2005, 232, 117-126.
    Meng, X. G.; Guo, Y.; Hu, C. W.; Zeng, X. C., Mimic models of peroxidase - kinetic studies of the catalytic oxidation of hydroquinone by H2O2. J. Inorg. Biochem. 2004, 98, 2107-2113.
    Mohamadin, A. M., Possible Role of Hydroxyl Radicals in The Oxidation of Dichloroacetonitrile by Fenton-like Reaction. J. Inorg. Biochem. 2001, 84, 97-105.
    Monfared, H. H.; Amouei, Z., Hydrogen Peroxide Oxidation of Aromatic Hydrocarbons by Immobilized Iron(III). J. Mol. Catal. A-Chem. 2004, 217, 161-164.
    Murata, M.; Suzuki, T.; Midorikawa, K.; Oikawa, S.; Kawanishi, S., Oxidative DNA damage induced by a hydroperoxide derivative of cyclophosphamide. Free Radical Biol. Med. 2004, 37, 793-802.

    Nam, K.; Rodriguez, W.; Kukor, J. J., Enhanced Degradation of Polycyclic Aromatic Hydrocarbons by Biodegradation Combined with a Modified Fenton Reaction. Chemosphere 2001, 45, 11-20.
    Nam, S.; Renganathan, V.; Tratnyek, P. G., Substituent Effects on Azo Dye Oxidation by The Fe-III-EDTA-H2O2 System. Chemosphere 2001, 45, 59-65.
    Nerud, F.; Baldrian, P.; Gabriel, J.; Ogbeifun, D., Decolorization of Synthetic Dyes by The Fenton Reagent and The Cu/pyridine/H2O2 System. Chemosphere 2001, 44, 957-961.
    Nunn, C. C.; Schechter, R. S.; Wade, W. H., Visual Evidence Regarding The Nature of Hemimicelles through Surface Solubilization of Pinacyanol Chloride. J. Phys. Chem. 1982, 86, 3271-3272.
    Osborn-Barnes, H. T.; Akoh, C. C., Copper-catalyzed oxidation of a structures lipid-based emulsion containing α-Tocopherol and citric acid: influence of pH and NaCl. J. Agric. Food Chem. 2003, 51, 6851-6855.
    Paczesniak, T.; Sobkowiak, A., The Influence of Solvent on The Reaction between Iron(II), (III) and Hydrogen peroxide. J. Mol. Catal. A-Chem. 2003, 194, 1-11.
    Panda, A. K.; Chakraborty, A. K., Studies on The Interaction of Bacterial Lipopolysaccharide with Cationic Dyes by Absorbance and Fluorescence Spectroscopy. J. Photochem. Photobiol. A-Chem. 1997, 111, 157-162.
    Pelmenschikov, V.; Siegbahn, P. E. M., Copper-zinc Superoxide Dismutase: Theoretical Insights into The Catalytic Mechanism. Inorg. Chem. 2005, 44, 3311-3320.
    Poulios, I.; Micropoulou, E.; Panou, R.; Kostopoulou, E., Photooxidation of Eosin Y in The Presence of Semiconducting Oxides. Appl. Catal. B-Environ. 2003, 41 (4), 345-355.

    Pecci, L., Montefoschi, G. and Cavallini, D., Some new details of the copper-hydrogen peroxide interaction. Biochemical and Biophysical Research Communications 1997, 235, 264-267.
    Sabate, R.; Estelrich, J., Pinacyanol as Effective Probe of Fibrillar β-Amyloid Peptide: Comparative Study with Congo Red. Biopolymers 2003, 72, 455-463.
    Sabate, R.; Gallardo, M.; de la Maza, A.; Estelrich, J., A Spectroscopy Study of The Interaction of Pinacyanol with N-dodecyltrimethylammonium Bromide Micelles. Langmuir 2001, 17, 6433-6437.
    Schweigert, N.; Acero, J. L.; von Gunten, U.; Canonica, S.; Zehnder, A. J. B.; Eggen, R. I. L., DNA Degradation by The Mixture of Copper and Catechol is Caused by DNA-copper-hydroperoxo Complexes, Probably DNA-Cu(I)OOH. Environ. Mol. Mutagen. 2000, 36, 5-12.
    Seal, S.; Kuiry, S. C.; Heinmen, B., Effect of Glycine and Hydrogen Peroxide on Chemical-Mechanical Planarization of Copper. Thin Solid Films 2003, 423, 243-251.
    Simeon, A.; Wegrowski, Y.; Bontemps, Y.; Maquart, F. X., Expression of Glycosaminoglycans and Small Proteoglycans in Wounds: Modulation by The Tripeptide-copper Complex Glycyl-L-Histidyl-L-Lysine-Cu2+. J. Invest. Dermatol. 2000, 115, 962-968.
    Stylidi, M.; Kondarides, D. I.; Verykios, X. E., Visible Light-induced Photocatalytic Degradation of Acid Orange 7 in Aqueous TiO2 Suspensions. Appl. Catal. B-Environ. 2004, 47, 189-201.
    Sykora, J., Photochemistry of Copper Complexes and Their Environmental Aspects. Coord. Chem. Rev. 1997, 159, 95-108.

    Toniolo, R.; Comisso, N.; Bontempelli, G.; Schiavon, G., Amperometric Determination of Peroxides by Glassy Carbon Electrodes Modified with Copper-phenanthroline Complexes. Electroanalysis 1996, 8, 151-157.
    Velusamy, S.; Punniyamurthy, T., Copper(II)-catalyzed C-H Oxidation of Alkylbenzenes and Cyclohexane with Hydrogen Peroxide. Tetrahedron Lett. 2003, 44, 8955-8957.
    Yamashita, N.; Tanemura, H.; Kawanishi, S., Mechanism of oxidative DNA damage induced by quercetin in the presence of Cu(II). Mutat. Res.-Fundam. Mol. Mech. Mutagen. 1999, 425, 107-115.
    Zhang, L.; Subramanian, R. S., A Model of Abrasive-free Removal of Copper Films Using an Aqueous Hydrogen Peroxide-glycine Solution. Thin Solid Films 2001, 397, 143-151.
    Zhao, X. K.; Yang, G. P.; Wang, Y. J.; Gao, X. C., Photochemical Degradation of Dimethyl Phthalate by Fenton Reagent. J. Photochem. Photobiol. A-Chem. 2004, 161, 215-220.
    郭俊廷. 銅-胺基酸錯合物活化H2O2之動力學與反應機制探討. 碩士論文,  
      國立清華大學, 2006.
    林采吟. 水相系統中過氧化氫的活化與量測. 博士論文, 國立清華大學, 2007.

    蘇育褘.  銅-胺基酸錯合物活化H2O2之研究:醛及有機酸的效應. 碩士論文, 國立清華大學, 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE