研究生: |
蔡英蘭 Ying-lan Tsai |
---|---|
論文名稱: |
蛋白質微陣列光固化技術之研究 The developemnt of benzophenone-based photoimmobilization for the fabrication of protein microarray |
指導教授: |
董瑞安
Ruey-an Doong |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 英文 |
論文頁數: | 81 |
中文關鍵詞: | 蛋白質晶片 、光固化技術 、自組單分子薄膜 |
外文關鍵詞: | protein microarray, photoimmobilization technique, self-assembled monolayers (SAMs) |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,隨著DNA晶片製作技術的成熟,蛋白質晶片在診斷及製藥方面的應用也正在研究當中。而發展蛋白質晶片的關鍵技術就在於蛋白質固化技術。然而,目前已發展的蛋白質固化技術所遭遇到的瓶頸之一為非特定性吸附。因此本研究的目的在於發展一蛋白質光固化結合自組單分子薄膜之技術,不僅能將蛋白質固定於金基材上,同時達到降低非特定性吸附的效果,並將此技術應用於蛋白質晶片之製作。本研究藉由測量接觸角、X-光電子能譜儀、原子力顯微鏡以及放射性同位素之分析來瞭解光固化流程中之表面特性。以同位素分析結果顯示,在此光固化技術中使用1 mg/ml benzophenones (BP),蛋白質固定在金上的量為每毫米平方1.35 × 1010個分子,非特定性吸附量為28 %;若使用1 mg/ml BP將蛋白質固定在金表面上,固定量為每毫米平方1.46 × 1010個分子,並可將非特定性吸附降低至2 %以下。在應用於蛋白質晶片之製作方面,此光固化技術可藉由使用光罩曝光達到蛋白質陣列之點的大小為12 mm。另外可結合點印技術,將老鼠免疫球蛋白及33 %甘油點印在基材上與抗體反應,則可從螢光顯微鏡看到點印之大小為1 mm。從以上結果來看,此蛋白質光固化技術可成功地將蛋白質固定於金基材上,並證明此技術應用於製作蛋白質晶片之潛能及可行性。
The development of protein microarray has recently received much attention in diagnosis and pharmaceutics. A key point for the development of protein microarray is the protein immobilization technique. One of the limitations for the developed protein immobilization techniques is nonspecific adsorption. The purpose of this study was to develop the BP-based photoimmobilization combined self-assembled monolayers (SAMs) techniques for protein fixation. The SAM procedures were optimized to minimize the nonspecific adsorption and applied to the fabrication of protein microarray, including protein photopatterning via photomask and protein array with pin-printing method. Surface of SAM was characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), contact angle measurement, and radiol l assay. Results show that the protein cover density was 1.46 × 1010 molecules/mm2 on the gold surface using 1 mg/ml BP-based photoimmobilibzation technique and the nonspecific adsorption could be minimized to 2 %. The patterning size of 12 mm was obtained with the illumination of UV light using photomask. Combination with pin-printing method, Mouse IgG with 33% glycerol printed to react with antibody was observed as the spot size of 1 mm. The results show that this BP based on photoimmobilization technique has the potential for the fabrication of protein array.
1. Delamarche, E., Sundarababu, G., Biebuyck, H., Michel, B., Gerber, C., Sigrist, H., Wolf, H., Ringsdorf, H., Xanthopoulos, N., and Mathieu, H. J., Immobilization of antibodies on a photoactive self-assembled monolayer on gold, Langmuir, 12, 1997-2006, 1996.
2. Kodadek, T., Protein microarrays: prospects and problems, Chemistry & Biology, 8, 105-115, 2001.
3. Pandley, A., Mann, M., Proteomics to study genes and genomes, Nature, 405, 837-846, 2000.
4. Brockman, J. M., Nelson, B. P., and Corn, R. M., Surface plasmon resonance imaging measurements of ultrathin organic films, Ann. Rev. Phys. Chem., 51, 41-63, 2000.
5. Schaeferling, M., Schiller, S., Paul, H., Kruschina, M., Pavlickova, P., Meerkamp, M., Giammasi, C., and Kambhampati, D., Application of self-assembly techniques in the design of biocompatible protein microarray surfaces, Electrophoresis, 23, 3097-3105, 2002.
6. Jin, W., Brennan, J. D., Prpperties and applications for proteins encapsulated within sol-gel derived materials, Anal. Chim. Acta, 461, 1-36, 2002.
7. Ellerby, L. M., Nishida, C. R., Nishida, F., Yamanaka, S. A., Dunn, B., Valentine, J. S., and Zink, J. I., Encapsulation of proteins in transparent porous silicate glasses prepared by the sol-gel method, Science, 255, 1113-1115, 1992.
8. Rupcich, N., Goldstein, A., and Brennan, J. D., Optimization of sol-gel formulations and surface treatments for the development of pin-printed protein microarrays, Chem. Mater., 15, 1803-1811, 2003.
9. Veiseh, M., Zareie, M. H., and Zhang, M., Highly selective protein patterning on gold-silicon substrates for biosensor application, Langmuir, 18, 6671-6678, 2002.
10. Thiel, A. J., Frutos, A. G., Jordan C. E., Corn, R. M., and Smith, L. M., In situ surface plasmon resonance imaging detection of DNA hybridization to oligonucleotide arrays on gold surfaces, Anal. Chem., 69, 4948-4956, 1997.
11. Chowdhury, P. B., Luckham, P. F., Probing recognition process between an antibody and an antigen using atomic force microscopy, Colloids and surfaces A: Physicochem. Eng. Aspects, 143, 53-57, 1998.
12. Brockman, J. M., Frutos, A. G., and Corn, R, M., A multistep chemical modification procedure to create DNA arrays on gold surfaces for the study of protein-DNA interactions with surface plasmon resonance imaging, J. Am. Chem. Soc., 121, 8044-8051, 1999.
13. Smith, E. A., Wanat, M. J., Cheng, Y., Barreira, S. V. P., Frutos, A. G., and Corn, R. M., Formation, spectroscopic characterization, and application of sulfhydryl-terminated alkanethiol monolayers for the chemical attachment of DNA onto gold surfaces, Langmuir, 17, 2502-2507, 2001.
14. Jordan, C. E., Corn, R. M., Surface plasmon resonance imaging measurements of electrostatic biopolymer adsorption onto chemically modified gold surfaces, Anal. Chem., 69, 1449-1456, 1997.
15. Butler, J. E., Ni, L., Nessler, R., Joshi, K. S., Suter, M., Rosenberg, B., Chang, J., Brown, W. R., and Cantarero, L. A., The physical and functional behavior of capture antibodies adsorbed on polystyrene, J. Immunol. Methods, 150, 77-90, 1992.
16. Yang, Z., Frey, W., Oliver, T., and Chilkoti, A., Light-activated affinity micropatterning of proteins on self-assembled monolayers on gold, Langmir, 16, 1751-1758, 2000.
17. Mesthrige, K. W., Amro, N. A., and Liu, G. Y., Immobilization of proteins on self-assembled monolayers, Scanning, 22, 380-388, 2000.
18. Frutos, A. G., Brockman, J. M., and Corn, R. M., Reversible protection and reactive patterning of amine- and hydroxyl-terminated self-assembled monolayers on gold surfaces for the fabrication of biopolymer arrays, Langmuir, 16, 2192-2197, 2000.
19. Wirde, M., Gelius, U., Self-assembled monolayers of cystamine and cysteamine on gold studied by XPS and voltammetry, Langmuir, 15, 6370-6378, 1999.
20. Weber, P. J. A., Beck-Sickinger, A. G., Comparison of the photochemical behavior of four different photoactivatable probes, J. Peptide Research, 49, 375, 1997.
21. Fleming, S. A., Chemical reagents in photoaffinity labeling, Tetrahedron, 51, 46, 12479-12521, 1995.
22. Sigrist, H., Collioud, A., Clemence, J. F., Gao, H., Luginbuhl, R., Sanger, M., and Sundarababu, G., Surface immobilization of biomolecules by light, Optical engineering, 34, 8, 2339-2348, 1995.
23. Yan, M., Cai, S. X., Wybourne, M. N., and Keana, J. F. W., N-hydroxysuccinimide ester functionalized perfluorophenyl azides as novel photoactive heterobifunctional cross-linking reagents. The covalent immobilization of biomolecules to polymer surfaces, Bioconjugate Chem., 5, 151-157, 1994.
24. Mrksich, M., Whitesides, G. M., Patterning self-assembled monolayers using microcontact printing: a new technology for biosensors, Trends in biotechnology, 13, 228-235, 1995.
25. Schena, M., Heller, R. A., Theriault, T. P., Konrad, K., Lachenmeier, E., and Davis, R. W., Microarrays: biotechnology’s discovery platform for functional genomics, Trens in biotechnology, 16, 301-306, 1998.
26. Lopez, G. P., Albers, M. W., Schreiber, S. L., Carroll, R., Peralta, E., and Whitesides, G. M., Convenient methods for patterning the adhesion of mammalian cells to surfaces using self-assembled monolayers of alkanethiolates on gold, J. Am. Chem. Soc., 115, 5877-5878, 1993.
27. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M., and Ingber, D. E., Micropatterned surfaces for control of cell shape, position, and function, Biotechnol. Prog., 14, 356-363, 1998.
28. Nedelkov, D., Nelson, R. W., Analysis of native proteins from biological fluids by biomolecular interaction analysis mass spectrometry (BIA/MS): exploring the limit of detection, identification of non-specific binding and detection of multi-protein complexes, Biosensors & Bioelectronics, 16, 1071-1078, 2001.
29. Liu, Y. C., Wang, C. M., and Hsiung, K. P. Comparison of different protein immobilization methods on quartz crystal microbalance surface in floe injection immunoassay, Anal. Biochem., 299, 130-135, 2001.
30. http://www.probes.com/servlets/datatable?item=1526&id=32090
31. http://www.microarrays.org/pdfs/PostProcessing2001.pdf
32. Prime, K. L., Whitesides, G. M., Adsorption of proteins onto surfaces containing end-attached oligo (ethylene oxide): a model system using self-assembled monolayers, J. Am. Chem. Soc., 115, 10714-10721, 1993.
33. Kwok, D. Y., Neumann, A. W., Contact angle interpretation: re-evaluation of existing contact angle data, Colloids and Surface A: Physicochem. Eng. Aspects, 161, 49-62, 2000.
34. Tsai, M. Y., Lin, J. C., Preconditioning gold substrates influences organothiol self-assembled monolayer (SAM) formation, J. Colloid Interface Sci., 238, 259-266, 2001.
35. Lee, M. T., Hsueh, C. C., Freund, M. S., and Ferguson, G. S., Air oxidation of self-assembled monolayers, Langmuir, 14, 6419-6423, 1998.
36. Nahar, P., Wali, N. M., and Gandhi, R. P., Light-induced activation of an inert surface for covalent immobilization of a protein ligand, Anal. Biochem., 294, 148-153, 2001.
37. Lee, K. N., Shin, D. S., Lee, Y. S., and Kim, Y. K., Protein patterning bu virtual mask photolithography using a micromirror array, J. Micromech. Microeng., 13, 18-25, 2003.