研究生: |
黃怡瑄 Huang, Emily Kay |
---|---|
論文名稱: |
利用熱銣原子蒸氣產生單光子對之研究 Study of Generating Single-Photon Pairs with Heated Rubidium Atomic Vapor |
指導教授: |
余怡德
Yu, Ite |
口試委員: |
陳泳帆
Chen, Yong-Fan 褚志崧 Chuu, Chih-Sung |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 61 |
中文關鍵詞: | 單光子對 、雙光子 、熱原子 、電磁波引發透明系統 、四波混頻 、法布里布羅共振腔 |
外文關鍵詞: | Single-photon pair, Biphoton, Hot atom, Electromagnetically induced transparency, Four wave mixing, Fabry–Pérot cavity |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究如何以攝氏41.6度之單同位素銣原子(87Rb)產生單光子對。在每對單光子中,兩顆光子之間具有時間關聯性,其中第一顆光子被作為觸發光子,而第二顆光子則可作為單光子源使用,並應用至其他領域,如量子資訊。
在產生單光子對以前,電磁波引發透明(Electromagmeticallu-induced-transparency,EIT)及四波混頻(Four-wave-mixing,FWM)光譜被用以決定系統狀態。在本實驗系統之電磁波引發透明光譜中,其透明窗口峰值可達61%,而其半高全寬為1百萬赫茲,另外,該光譜在其透明窗口兩側50百萬赫茲之範圍內,穿透率皆很低,因此該電磁波引發透明系統可被視為一窄頻帶通濾波器,此特質對後端應用有很大助益。而藉由量測四波混頻光譜,不僅能夠確認系統所產生的光的確是由四波混頻機制所產生,也提供了一條有效收集成對光子的途徑。除此之外,在進行產生單光子對實驗時,如何去除欲收集之光子對之外的光子亦是研究的一大課題。此論文提供一種可能的濾波方式,可將這些光子濾除120分貝。最終,實驗系統每秒可產生約900對單光子對(已對系統收光效率校正)。
This thesis sheds light on single-photon pairs generation with single isotope 87Rb vapor that was heated to 41.6 degree Celsius. In each pair, there are two time-correlated photons with different frequencies. The first photon functions as the trigger photon and the second photon can then be utilized as a single-photon source and be applied to other study fields, such as quantum information.
In an attempt to investigate the conditions of the system, both of the eletromagnetically-induced-transparency (EIT) and the four-wave-mixing (FWM) spectra are examined. In the EIT spectrum, a peak with sub-natural linewidth and high transmission is performed. In addition, its baseline is low enough (1.0 ($2
i\times$MHz)) so that the EIT mechanism can be viewed as a narrowband frequency filter, which profits consequential work. As for the FWM experiment, it not only confirms that the generated beam is genuinely the sum-frequency of the other fields, but provides an approach to collect the paired photons efficiently. Besides those mentioned above, in an effort to execute the single-photon pairs generation, how to get rid of the undesired photons becomes a crucial issue. This work gives a probable arrangement of filtering that attenuates the unwanted fields by over 120 dB. In the end, a generation rate of approximately 900 photon pairs per second is reported (corrected by the collection efficiency).
[1] D. Burnhamand D.Weinberg, Phys. Rev. Lett. 25, 84 (1970).
[2] Xiao-Hui Bao, Yong Qian, Jian Yang, Han Zhang, Zeng-Bing Chen, Tao Yang, and Jian-Wei Pan,
Phys. Rev. Lett. 101, 190501 (2008).
[3] A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan and H. J. Kimble, Nature
423, 731–734 (2003).
[4] Shengwang Du, Pavel Kolchin, Chinmay Belthangady, G. Y. Yin, and S. E. Harris, Phys. Rev. Lett.
100, 183603 (2008).
[5] C. H. van der Wal,M. D. Eisaman, A. André, R. L.Walsworth, D. F. Phillips, A. S. Zibrov,M. D. Lukin,
Science 301, 5630, 196-200 (2003).
[6] M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S. Zibrov and M. D. Lukin, Nature 438,
pages 837–841 (2005).
[7] Lingbang Zhu, Xianxin Guo, Chi Shu, Heejeong Jeong, and Shengwang Du, Appl. Phys. Lett. 110,
161101 (2017).
[8] Gang Wang, Yu-Sheng Wang, Emily Kay Huang,Weilun Hung, Kai-Lin Chao, Ping-Yeh Wu, Yi-Hsin Chen and Ite A. Yu, Scientific Reports 8, 7959 (2018).