簡易檢索 / 詳目顯示

研究生: 盧耘庸
Lu, Yun-Yung
論文名稱: 利用開環聚合方法合成新型態全共軛共嵌段高分子
Synthesis of Conjugated Block Copolymers Composed of Dithienyl-Cyclopentadithiophene via Ring-Opening Metathesis Polymerization
指導教授: 堀江正樹
Horie, Masaki
口試委員: 王潔
Wang, Jane
游進陽
Yu, Chin Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 134
中文關鍵詞: 開環歧化聚合反應予體受體共軛嵌段聚合物聚亞芳香基乙烯共軛橋共軛高分子活性聚合
外文關鍵詞: Ring-opening metathesis polymerization, donor-accptor conjugated block copolymer, poly(arylenevinylene)s, Conjugated bridge, Conjugated polymer, living polymerization
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們利用開環歧化聚合反應(Ring-opening metathesis polymerization, ROMP)的方式合成新型態共軛高分子,合成出一系列具亞芬香基乙烯衍生物,藉由這種合成方式我們可以控制高分子的光學性質以及其表面排列的特性。利用Mcmurry以及Suzuki偶聯反應合成出一系列全共軛環狀單體DT-CPDT、CPDT、BTh以及DTBT。這些單體藉由氫-1、碳-13核磁共振儀以及場脫附質譜儀來確認結構,此外DT-CPDT更藉由X射線晶體觀察其結構的排列。利用開環歧化聚合反應的方法,高分子分子量可以輕易藉由改變單體與催化劑的比例來控制。利用同樣的方式,共嵌段高分子可以利用反應完第一段單體後緊接著加入第二段的單體來合成。而藉由UV-可見光光譜,我們可以觀察到較廣的吸收波段因為不同的高分子嵌段具有不同的吸收波段。此外,共嵌段高分子具有較小的能隙,因為電子受體嵌段會降低最低未占分子軌域,而電子予體提高最高占據分子軌域。因此這些高分子材料十分具有潛力應用於光感測器或是太陽能電池材料。
    利用原子力顯微鏡我們觀察這些共嵌段高分子的各嵌段性質以及其表面科學,我們更致力於原位(In-situ)開環聚合的機制研究,最後利用穿隧式電子顯微鏡來觀察DT-CPDT於高定向熱解石墨的自組裝現象。


    In this work, new conjugated polymers, poly(arylene-vinylene)s, have been synthesized via ring-opening metathesis polymerization (ROMP) of cyclic vinylene monomers in order to tailor the optical properties and morphology of the resulting polymers. Dithienyl cyclopentadithiophene vinylene (DT-CPDT) monomers were newly synthesized by Suzuki and McMurry couplings. Similarly, other cyclic vinylene monomers comprising of cyclopentadithiophene (CPDT), bis(thienyl)-benzothiadiazole (DTBT), and bis(hexyl)-bithiophene (BTh) were also cyclized by McMurry coupling. These monomers were characterized by 1H NMR spectroscopy and field dissociation mass spectrometry (FDMS). In addition, molecular structure of one of DT-CPDT monomers was observed by single-crystal X-ray crystallography. ROMP of these cyclic vinylene monomers and subsequent addition of one of these monomers provided all-conjugated block copolymers of poly(arylene-vinylene)s. Using ROMP, polymer molecular weight was controlled by changing the monomer to catalyst ratio. Wide-range UV-vis absorption properties were observed for these block copolymers compared to the original blocks because each block absorbs different wavelength of lights. In addition, narrower bandgaps of the block copolymers were observed from electrochemical properties, because acceptors lower the LUMO level and donors raise the HOMO level. These polymers are potentially useful as materials for photo-sensors and OPV devices. Morphology of these polymers were studied by atomic force microscopy (AFM) to understand the effect of conjugated blocks on the morphology. In-situ ROMP of DT-CPDT monomer was also observed by AFM. Finally, scanning tunneling microscopy (STM) was conducted for observation of a single molecule of DT-CPDT on highly ordered pyrolytic graphite (HOPG).

    Abstract I Chapter 1 Introduction 1 1-1 Introduction to conjugated polymers 1 1-1-1 Conjugated polymers 1 1-1-2 Organic photovoltaics based on conjugated polymers 1 1-1-3 Organic field-effect transistors based on conjugated polymers 7 1-2 Introduction to synthesis methods 1 1-2-1 Olefin metathesis 1 1-2-2 Mechanism of ROMP 2 1-2-3 Catalysts for living polymerization ROMP 4 1-2-4 A donor-acceptor conjugated block copolymer of poly(arylenevinylene)s through ROMP 9 1-3 Molecular design and morphology study 12 1-3-1 Architectures of polymer solar cells 12 1-3-2 Self-assembly of block copolymers 13 1-3-3 Rod–rod block copolymers 15 1-3-4 Self-assembly monomers observation using AFM and STM 18 1-4 Aim of work 23 Chapter 2 Synthesis of monomers and polymers 26 2-1 Synthesis of monomers 26 2-1-1 Synthesis of bis(thienyl)-cyclopentadithiophene (DT-CPDT) 27 2-1-1 X-ray crystallography of bis(thienyl)-cyclopentadithiophene (DT-CPDT) 37 2-1-2 Synthesis of bis(thienyl)-benzothiadiazole (DTBT) 40 2-1-3 Synthesis of bis(hexyl)-bithiophene (BTh) 41 2-1-4 Synthesis of cyclopentadithiophene (CPDT) 42 2-2 Synthesis of polymers 43 2-2-3 Synthesis of homopolymers 43 2-2-3 Synthesis of block copolymers 47 2-3 Optical and electrochemical properties of polymers 53 2-3-1 Optical properties 53 2-3-1 Electrochemical properties 68 2-4 Morphology study 78 2-4-1 AFM of polymer films 78 2-4-1 STM of monomer 84 Chapter 3 Conclusions 86 Chapter 4 Experiment section 87 4-1 General methods 87 4-2 Synthesis of monomers 88 4-2-1 Synthesis of dithenyl-cyclopentadithiophene (DT-CPDT) 88 4-2-1-1 Synthesis of 4,4-bis(2-ethylhexyl)- cyclopentadithiophene (1) 88 4-2-1-2 Synthesis of 2,6-dibromo-4,4-bis(2-ethylhexyl)-cyclopentadithiophene (2) 88 4-2-1-3 Synthesis of 4,4-bis(2-ethylhexyl)-2,6-di(thiophenyl)- cyclopentadithiophene (3) 89 4-2-1-4 Synthesis of 5,5'-(4,4-bis(2-ethylhexyl) -cyclopenta[2,1-b:3,4-b']dithiophene-2,6-diyl)bis(thiophene-2-carbaldehyde) (4) 90 4-2-1-5 Synthesis of 4,4-bis(2-ethylhexyl)-2,6-di(thiophenyl)- cyclopentadithiophene M1a and M1b 91 4-2-2-1 Synthesis of 4,4-bis(hexyl)- cyclopentadithiophene (5) 92 4-2-2-2 Synthesis of 2,6-dibromo-4,4-bis(hexyl)-cyclopentadithiophene (6) 92 4-2-2-3 Synthesis of 4,4-bis(hexyl)-2,6-di(thiophenyl)- cyclopentadithiophene (7) 93 4-2-2-4 Synthesis of 5,5'-(4,4-bis(hexyl) -cyclopenta[2,1-b:3,4-b']dithiophene-2,6-diyl)bis(thiophene-2-carbaldehyde) (8) 94 4-2-2-5 Synthesis of 4,4-bis(hexyl)-2,6-di(thiophenyl)- cyclopentadithiophene M1a’ and M1b’. 95 4-2-3 Synthesis of bis(thienyl)-benzothiadiazole (DTBT) 96 4-2-3-1 Synthesis of 4,4-bis(2-ethylhexyl)- cyclopentadithiophene (9) 96 4-2-3-2 Synthesis of 4,4-bis(2-ethylhexyl)- cylopentadithiophene (10) 96 4-2-3-3 Synthesis of 4,7-bis(3-hexylthiophen-2-yl)benzothiadiazole (11) 97 4-2-3-4 Synthesis of 5,5'-(benzothiadiazole-4,7-diyl)bis(4-hexylthiophene-2-carbaldehyde) (12) 98 4-2-3-5 Synthesis of bis(thienyl)-benzothioadiazole (DTBT) (M2a) and (M2b) 99 4-2-4 Synthesis of bis(hexyl)-bithiophene (BTh) 100 4-2-4-1 Synthesis of 3,3'-dihexyl-2,2'-bithiophene (13) 100 4-2-4-2 Synthesis of 3,3'-dihexyl-[2,2'-bithiophene]-5,5'-dicarbaldehyde (14) 100 4-2-4-3 Synthesis of bis(hexyl)-bithiophene (BTh) (M3a) (M3b) 101 4-3 Synthesis of polymers 103 4-3-1 Synthesis of homopolymer 103 4-3-1-1 Synthesis of H1 (n = 7) 103 4-3-1-1 Synthesis of H2 (n = 10) 103 4-3-2 Synthesis of block copolymers 104 4-3-2-1 Synthesis of D1 104 4-3-2-2 Synthesis of D2 105 4-3-2-3 Synthesis of D3 106 4-3-2-4 Synthesis of D4 107 4-3-2-5 Synthesis of D5 108 References 128

    1. Heeger, A. J. Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials (Nobel Lecture). Angew. Chem., Int. Ed. 2001, 40 (14), 2591-2611.
    2. Usta, H.; Facchetti, A.; Marks, T. J. n-Channel Semiconductor Materials Design for Organic Complementary Circuits. Acc. Chem. Res. 2011, 44 (7), 501-510.
    3. Guo, X.; Baumgarten, M.; Müllen, K. Designing π-conjugated polymers for organic electronics. Prog. Polym. Sci. 2013, 38 (12), 1832-1908.
    4. Tang, C. W. Two‐layer organic photovoltaic cell. Appl. Phys. Lett. 1986, 48 (2), 183-185.
    5. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science 1995, 270 (5243), 1789-1791.
    6. Bronstein, H.; Chen, Z.; Ashraf, R. S.; Zhang, W.; Du, J.; Durrant, J. R.; Shakya Tuladhar, P.; Song, K.; Watkins, S. E.; Geerts, Y.; Wienk, M. M.; Janssen, R. A. J.; Anthopoulos, T.; Sirringhaus, H.; Heeney, M.; McCulloch, I. Thieno[3,2-b]thiophene−Diketopyrrolopyrrole-Containing Polymers for High-Performance Organic Field-Effect Transistors and Organic Photovoltaic Devices. J. Am. Chem. Soc. 2011, 133 (10), 3272-3275.
    7. Yang, T.; Wang, M.; Duan, C.; Hu, X.; Huang, L.; Peng, J.; Huang, F.; Gong, X. Inverted polymer solar cells with 8.4% efficiency by conjugated polyelectrolyte. Energy Environ. Sci. 2012, 5 (8), 8208-8214.
    8. You, J.; Dou, L.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen, C.-C.; Gao, J.; Li, G. A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commun. 2013, 4, 1446.
    9. Gao, L.; Zhang, Z. G.; Xue, L.; Min, J.; Zhang, J.; Wei, Z.; Li, Y. All‐Polymer Solar Cells Based on Absorption‐Complementary Polymer Donor and Acceptor with High Power Conversion Efficiency of 8.27%. Adv. Mater. 2015, 28 (9), 1884-1890.
    10. Winder, C.; Sariciftci, N. S. Low bandgap polymers for photon harvesting in bulk heterojunction solar cells. J. Mater. Chem. 2004, 14 (7), 1077-1086.
    11. Gu, C.; Xiao, M.; Bao, X.; Han, L.; Zhu, D.; Wang, N.; Wen, S.; Zhu, W.; Yang, R. Design, synthesis and photovoltaic properties of two π-bridged cyclopentadithiophene-based polymers. Polym. Chem. 2014, 5 (22), 6551-6557.
    12. Wang, X.; Sun, Y.; Chen, S.; Guo, X.; Zhang, M.; Li, X.; Li, Y.; Wang, H. Effects of π-conjugated bridges on photovoltaic properties of donor-π-acceptor conjugated copolymers. Macromolecules 2012, 45 (3), 1208-1216.
    13. Zhang, S.; Ye, L.; Wang, Q.; Li, Z.; Guo, X.; Huo, L.; Fan, H.; Hou, J. Enhanced Photovoltaic Performance of Diketopyrrolopyrrole (DPP)-Based Polymers with Extended π Conjugation. J. Phys. Chem. C 2013, 117 (19), 9550-9557.
    14. Kuo, Y., Thin film transistors. 1. Amorphous silicon thin film transistors. Springer Science & Business Media: 2004; Vol. 1.
    15. Brotherton, S. D., Introduction to thin film transistors: physics and technology of TFTs. Springer Science & Business Media: 2013.
    16. Arias, A. C.; MacKenzie, J. D.; McCulloch, I.; Rivnay, J.; Salleo, A. Materials and applications for large area electronics: solution-based approaches. Chemical reviews 2010, 110 (1), 3-24.
    17. Fukuda, K.; Takeda, Y.; Yoshimura, Y.; Shiwaku, R.; Tran, L. T.; Sekine, T.; Mizukami, M.; Kumaki, D.; Tokito, S. Fully-printed high-performance organic thin-film transistors and circuitry on one-micron-thick polymer films. Nat. Commun. 2014, 5, 4147.
    18. Guo, X.; Xu, Y.; Ogier, S.; Ng, T. N.; Caironi, M.; Perinot, A.; Li, L.; Zhao, J.; Tang, W.; Sporea, R. A. Current status and opportunities of organic thin-film transistor technologies. IEEE Trans. Electron Devices 2017, 64 (5), 1906-1921.
    19. Gundlach, D. J. Organic electronics: Low power, high impact. Nat. Mater. 2007, 6 (3), 173.
    20. Lilienfeld, J. JE Lilienfeld US Patent, 1 (1930). US patent 1930, 1, 175.
    21. Horowitz, G. Organic field-effect transistors. Adv. Mater. 1998, 10 (5), 365-377.
    22. Quinn, J. T.; Zhu, J.; Li, X.; Wang, J.; Li, Y. Recent progress in the development of n-type organic semiconductors for organic field effect transistors. J. Mater. Chem. C 2017, 5 (34), 8654-8681.
    23. Lakshminarayana, A. N.; Ong, A.; Chi, C. Modification of acenes for n-channel OFET materials. J. Mater. Chem. C 2018, 6 (14), 3551-3563.
    24. Hasegawa, T.; Takeya, J. Organic field-effect transistors using single crystals. Sci. Technol. Adv. Mater. 2009, 10 (2), 024314.
    25. Tsumura, A.; Koezuka, H.; Ando, T. Polythiophene field-effect transistor: Its characteristics and operation mechanism. Synth. Met. 1988, 25 (1), 11-23.
    26. Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dotz, F.; Kastler, M.; Facchetti, A. A high-mobility electron-transporting polymer for printed transistors. Nature 2009, 457 (7230), 679-686.
    27. Lei, T.; Dou, J. H.; Pei, J. Influence of Alkyl Chain Branching Positions on the Hole Mobilities of Polymer Thin‐Film Transistors. Adv. Mater. 2012, 24 (48), 6457-6461.
    28. Kanimozhi, C.; Yaacobi-Gross, N.; Chou, K. W.; Amassian, A.; Anthopoulos, T. D.; Patil, S. Diketopyrrolopyrrole–Diketopyrrolopyrrole-Based Conjugated Copolymer for High-Mobility Organic Field-Effect Transistors. J. Am. Chem. Soc. 2012, 134 (40), 16532-16535.
    29. Kang, I.; Yun, H.-J.; Chung, D. S.; Kwon, S.-K.; Kim, Y.-H. Record High Hole Mobility in Polymer Semiconductors via Side-Chain Engineering. J. Am. Chem. Soc. 2013, 135 (40), 14896-14899.
    30. Sung, M. J.; Luzio, A.; Park, W. T.; Kim, R.; Gann, E.; Maddalena, F.; Pace, G.; Xu, Y.; Natali, D.; Falco, C. d.; Dang, L.; McNeill, C. R.; Caironi, M.; Noh, Y. Y.; Kim, Y. H. High‐Mobility Naphthalene Diimide and Selenophene‐Vinylene‐Selenophene‐Based Conjugated Polymer: n‐Channel Organic Field‐Effect Transistors and Structure–Property Relationship. Adv. Funct. Mater. 2016, 26 (27), 4984-4997.
    31. Kim, R.; Amegadze, P. S. K.; Kang, I.; Yun, H. J.; Noh, Y. Y.; Kwon, S. K.; Kim, Y. H. High‐Mobility Air‐Stable Naphthalene Diimide‐Based Copolymer Containing Extended π‐Conjugation for n‐Channel Organic Field Effect Transistors. Adv. Funct. Mater. 2013, 23 (46), 5719-5727.
    32. Kang, B.; Kim, R.; Lee, S. B.; Kwon, S.-K.; Kim, Y.-H.; Cho, K. Side-Chain-Induced Rigid Backbone Organization of Polymer Semiconductors through Semifluoroalkyl Side Chains. J. Am. Chem. Soc. 2016, 138 (11), 3679-3686.
    33. Zhao, Y.; Zhao, X.; Roders, M.; Qu, G.; Diao, Y.; Ayzner, A. L.; Mei, J. Complementary Semiconducting Polymer Blends for Efficient Charge Transport. Chem. Mater. 2015, 27 (20), 7164-7170.
    34. Rivnay, J.; Jimison, L. H.; Northrup, J. E.; Toney, M. F.; Noriega, R.; Lu, S.; Marks, T. J.; Facchetti, A.; Salleo, A. Large modulation of carrier transport by grain-boundary molecular packing and microstructure in organic thin films. Nat. Mater. 2009, 8 (12), 952.
    35. Tseng, H. R.; Phan, H.; Luo, C.; Wang, M.; Perez, L. A.; Patel, S. N.; Ying, L.; Kramer, E. J.; Nguyen, T. Q.; Bazan, G. C. High‐Mobility Field‐Effect Transistors Fabricated with Macroscopic Aligned Semiconducting Polymers. Adv. Mater. 2014, 26 (19), 2993-2998.
    36. Grubbs, R. H.; Chang, S. Recent advances in olefin metathesis and its application in organic synthesis. Tetrahedron 1998, 54 (18), 4413-4450.
    37. Schrock, R. R.; Hoveyda, A. H. Molybdenum and Tungsten Imido Alkylidene Complexes as Efficient Olefin-Metathesis Catalysts. Angew. Chem., Int. Ed. 2003, 42 (38), 4592-4633.
    38. Trnka, T. M.; Grubbs, R. H. The Development of L2X2RuCHR Olefin Metathesis Catalysts:  An Organometallic Success Story. Acc. Chem. Res. 2001, 34 (1), 18-29.
    39. Bielawski, C. W.; Grubbs, R. H. Living ring-opening metathesis polymerization. Prog. Polym. Sci. 2007, 32 (1), 1-29.
    40. Chauvin, Y. Olefin Metathesis: The Early Days (Nobel Lecture). Angew. Chem., Int. Ed. 2006, 45 (23), 3740-3747.
    41. Frenzel, U.; Nuyken, O. Ruthenium-based metathesis initiators: Development and use in ring-opening metathesis polymerization. J. Polym. Sci. A 2002, 40 (17), 2895-2916.
    42. Amir-Ebrahimi, V.; Corry, D. A.; Hamilton, J. G.; Thompson, J. M.; Rooney, J. J. Characteristics of RuCl2(CHPh)(PCy3)(2) as a catalyst for ring-opening metathesis polymerization. Macromolecules 2000, 33 (3), 717-724.
    43. Laverty, D. T.; Rooney, J. J. Mechanism of initiation of the ring-opening polymerization and addition oligomerization of norbornene using unicomponent metathesis catalysts. J. Chem. Soc. Faraday Trans 1983, 79 (4), 869-878.
    44. Fischer, E.; Maasböl, A. Zur Frage eines Wolfram‐Carbonyl‐Carben‐Komplexes. Angew. Chem. 1964, 76 (14), 645-645.
    45. Schrock, R. R. Alkylcarbene complex of tantalum by intramolecular .alpha.-hydrogen abstraction. J. Am. Chem. Soc. 1974, 96 (21), 6796-6797.
    46. Bazan, G. C.; Oskam, J. H.; Cho, H. N.; Park, L. Y.; Schrock, R. R. Living ring-opening metathesis polymerization of 2, 3-difunctionalized 7-oxanorbornenes and 7-oxanorbornadienes by Mo (CHCMe2R)(NC6H3-iso-Pr2-2, 6)(O-tert-Bu) 2 and Mo (CHCMe2R)(NC6H3-iso-Pr2-2, 6)(OCMe2CF3) 2. J. Am. Chem. Soc. 1991, 113 (18), 6899-6907.
    47. Schwab, P.; Grubbs, R. H.; Ziller, J. W. Synthesis and Applications of RuCl2(CHR‘)(PR3)2:  The Influence of the Alkylidene Moiety on Metathesis Activity. J. Am. Chem. Soc. 1996, 118 (1), 100-110.
    48. Cucullu, M. E.; Li, C.; Nolan, S. P.; Nguyen, S. T.; Grubbs, R. H. Thermochemical Investigation of Phosphine Ligand Substitution Reactions Involving trans-(PR3)2Cl2RuCH−CHCPh2 Complexes. Organometallics 1998, 17 (25), 5565-5568.
    49. Ulman, M.; Grubbs, R. H. Relative Reaction Rates of Olefin Substrates with Ruthenium(II) Carbene Metathesis Initiators1. Organometallics 1998, 17 (12), 2484-2489.
    50. Ulman, M.; Belderrain, T. R.; Grubbs, R. H. A series of ruthenium(II) ester-carbene complexes as olefin metathesis initiators: metathesis of acrylates†Dedicated to Professor Mitsuru Kubota on the occasion of his retirement.†. Tetrahedron Lett. 2000, 41 (24), 4689-4693.
    51. Bourissou, D.; Guerret, O.; Gabbaï, F. P.; Bertrand, G. Stable Carbenes. Chem. Rev. 2000, 100 (1), 39-92.
    52. Yu, C. Y.; Kingsley, J. W.; Lidzey, D. G.; Turner, M. L. Phenylenevinylene Block Copolymers via Ring‐Opening Metathesis Polymerization. Macromol. Rapid Commun. 2009, 30 (22), 1889-1892.
    53. Yu, C. Y.; Turner, M. L. Soluble Poly(p‐phenylenevinylene)s through Ring‐Opening Metathesis Polymerization. Angew. Chem., Int. Ed. 2006, 45 (46), 7797-7800.
    54. Lidster, B. J.; Kumar, D. R.; Spring, A. M.; Yu, C.-Y.; Turner, M. L. Alkyl substituted poly (p-phenylene vinylene) s by ring opening metathesis polymerisation. Polym. Chem. 2016, 7 (35), 5544-5551.
    55. Yu, C.-Y.; Chen, Y.-C.; Wang, C.-C. Synthesis and Ring Opening Reaction of Octaoctyl Substituted [2.2. 2.2](2, 7)-Fluorenophanetetraene by Photooxidation. New J. Chem. 2017.
    56. Yu, C.-Y.; Yu, S.-H.; Wen, S.-H.; Wang, C.-C. Synthesis and characterization of tetraoctyloxy substituted naphthalenophanedienes. Tetrahedron Lett. 2017, 58 (40), 3854-3858.
    57. Chang, S.-W.; Horie, M. A donor–acceptor conjugated block copolymer of poly (arylenevinylene) s by ring-opening metathesis polymerization. Chem. Commun. 2015, 51 (44), 9113-9116.
    58. He, M.; Qiu, F.; Lin, Z. Conjugated rod–coil and rod–rod block copolymers for photovoltaic applications. J. Mater. Chem. 2011, 21 (43), 17039-17048.
    59. Wöhrle, D.; Meissner, D. Organic Solar Cells. Adv. Mater. 1991, 3 (3), 129-138.
    60. Arango, A. C.; Johnson, L. R.; Bliznyuk, V. N.; Schlesinger, Z.; Carter, S. A.; Hörhold, H. H. Efficient Titanium Oxide/Conjugated Polymer Photovoltaics for Solar Energy Conversion. Adv. Mater. 2000, 12 (22), 1689-1692.
    61. Sariciftci, N.; Braun, D.; Zhang, C.; Srdanov, V.; Heeger, A.; Stucky, G.; Wudl, F. Semiconducting polymer‐buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells. Appl. Phys. Lett. 1993, 62 (6), 585-587.
    62. Segalman, R. A.; McCulloch, B.; Kirmayer, S.; Urban, J. J. Block Copolymers for Organic Optoelectronics. Macromolecules 2009, 42 (23), 9205-9216.
    63. Hoppe, H.; Niggemann, M.; Winder, C.; Kraut, J.; Hiesgen, R.; Hinsch, A.; Meissner, D.; Sariciftci, N. S. Nanoscale Morphology of Conjugated Polymer/Fullerene‐Based Bulk‐ Heterojunction Solar Cells. Adv. Funct. Mater. 2004, 14 (10), 1005-1011.
    64. Benten, H.; Ogawa, M.; Ohkita, H.; Ito, S. Design of Multilayered Nanostructures and Donor–Acceptor Interfaces in Solution‐Processed Thin‐Film Organic Solar Cells. Adv. Funct. Mater. 2008, 18 (10), 1563-1572.
    65. Hammond, P. T. Form and Function in Multilayer Assembly: New Applications at the Nanoscale. Adv. Mater. 2004, 16 (15), 1271-1293.
    66. Tang, H.; Lu, G.; Li, L.; Li, J.; Wang, Y.; Yang, X. Precise construction of PCBM aggregates for polymer solar cells via multi-step controlled solvent vapor annealing. J. Mater. Chem. 2010, 20 (4), 683-688.
    67. Verploegen, E.; Mondal, R.; Bettinger, C. J.; Sok, S.; Toney, M. F.; Bao, Z. Effects of Thermal Annealing Upon the Morphology of Polymer–Fullerene Blends. Adv. Funct. Mater. 2010, 20 (20), 3519-3529.
    68. Coffin, R. C.; Peet, J.; Rogers, J.; Bazan, G. C. Streamlined microwave-assisted preparation of narrow-bandgap conjugated polymers for high-performance bulk heterojunction solar cells. Nat. Chem. 2009, 1 (8), 657-661.
    69. Wang, E.; Hou, L.; Wang, Z.; Hellström, S.; Zhang, F.; Inganäs, O.; Andersson, M. R. An Easily Synthesized Blue Polymer for High‐Performance Polymer Solar Cells. Adv. Mater. 2010, 22 (46), 5240-5244.
    70. Tsai, J.-H.; Lai, Y.-C.; Higashihara, T.; Lin, C.-J.; Ueda, M.; Chen, W.-C. Enhancement of P3HT/PCBM Photovoltaic Efficiency Using the Surfactant of Triblock Copolymer Containing Poly(3-hexylthiophene) and Poly(4-vinyltriphenylamine) Segments. Macromolecules 2010, 43 (14), 6085-6091.
    71. Liang, Y.; Feng, D.; Wu, Y.; Tsai, S.-T.; Li, G.; Ray, C.; Yu, L. Highly Efficient Solar Cell Polymers Developed via Fine-Tuning of Structural and Electronic Properties. J. Am. Chem. Soc. 2009, 131 (22), 7792-7799.
    72. Bates, F. S.; Fredrickson, G. H. Block copolymers-designer soft materials. Phys. Today 2000.
    73. Botiz, I.; Darling, S. B. Optoelectronics using block copolymers. Mater. Today 2010, 13 (5), 42-51.
    74. Zhang, Y.; Tajima, K.; Hirota, K.; Hashimoto, K. Synthesis of All-Conjugated Diblock Copolymers by Quasi-Living Polymerization and Observation of Their Microphase Separation. J. Am. Chem. Soc. 2008, 130 (25), 7812-7813.
    75. Ohshimizu, K.; Ueda, M. Well-Controlled Synthesis of Block Copolythiophenes. Macromol. 2008, 41 (14), 5289-5294.
    76. Scherf, U.; Adamczyk, S.; Gutacker, A.; Koenen, N. All‐Conjugated, Rod‐Rod Block Copolymers‐Generation and Self‐Assembly Properties. Macromol. Rapid Commun. 2009, 30 (13), 1059-1065.
    77. Yokozawa, T.; Kohno, H.; Ohta, Y.; Yokoyama, A. Catalyst-Transfer Suzuki−Miyaura Coupling Polymerization for Precision Synthesis of Poly(p-phenylene). Macromolecules 2010, 43 (17), 7095-7100.
    78. Hinaut, A.; Meier, T.; Pawlak, R.; Feund, S.; Jöhr, R.; Kawai, S.; Glatzel, T.; Decurtins, S.; Müllen, K.; Narita, A. Electrospray deposition of structurally complex molecules revealed by atomic force microscopy. Nanoscale 2018, 10 (3), 1337-1344.
    79. Sherrington, D. C.; Taskinen, K. A. Self-assembly in synthetic macromolecular systems via multiple hydrogen bonding interactions. Chem. Soc. Rev. 2001, 30 (2), 83-93.
    80. Ivasenko, O.; Perepichka, D. F. Mastering fundamentals of supramolecular design with carboxylic acids. Common lessons from X-ray crystallography and scanning tunneling microscopy. Chem. Soc. Rev. 2011, 40 (1), 191-206.
    81. Jäckel, F.; Watson, M. D.; Müllen, K.; Rabe, J. Prototypical single-molecule chemical-field-effect transistor with nanometer-sized gates. Phys. Rev. Lett. 2004, 92 (18), 188303.
    82. Lei, S.; Surin, M.; Tahara, K.; Adisoejoso, J.; Lazzaroni, R.; Tobe, Y.; Feyter, S. D. Programmable Hierarchical Three-Component 2D Assembly at a Liquid−Solid Interface: Recognition, Selection, and Transformation. Nano Letters 2008, 8 (8), 2541-2546.
    83. Pan, G.-B.; Cheng, X.-H.; Höger, S.; Freyland, W. 2D Supramolecular Structures of a Shape-Persistent Macrocycle and Co-deposition with Fullerene on HOPG. J Am Chem Soc 2006, 128 (13), 4218-4219.
    84. Chilukuri, B.; McDougald, R. N.; Ghimire, M. M.; Nesterov, V. N.; Mazur, U.; Omary, M. A.; Hipps, K. W. Polymorphic, Porous, and Host–Guest Nanostructures Directed by Monolayer–Substrate Interactions: Epitaxial Self-Assembly Study of Cyclic Trinuclear Au(I) Complexes on HOPG at the Solution–Solid Interface. J. Phys. Chem. C 2015, 119 (44), 24844-24858.
    85. González, J. D. C.; Iyoda, M.; Rabe, J. P. Templated bilayer self-assembly of fully conjugated π-expanded macrocyclic oligothiophenes complexed with fullerenes. Nat. Commun. 2017, 8, 14717.
    86. Chiu, S. T.; Chiang, H. Y.; Lin, Y. J.; Lu, Y. Y.; Tanaka, H.; Hosokai, T.; Horie, M. Self-assembly and ring-opening metathesis polymerization of cyclic conjugated molecules on highly ordered pyrolytic graphite. Chem. Commun. 2018, 54 (44), 5546-5549.
    87. Zhang, Z. G.; Wang, J. Structures and properties of conjugated Donor–Acceptor copolymers for solar cell applications. J. Mater. Chem. 2012, 22 (10), 4178.
    88. Jacobson, H.; Stockmayer, W. H. Intramolecular reaction in polycondensations. I. The theory of linear systems. J. Chem. Phys. 1950, 18 (12), 1600-1606.
    89. Hodge, P. Entropically driven ring-opening polymerization of strainless organic macrocycles. Chem. Rev. 2014, 114 (4), 2278-312.
    90. Zhang, Y.; Zou, J.; Cheuh, C.-C.; Yip, H.-L.; Jen, A. K.-Y. Significant improved performance of photovoltaic cells made from a partially fluorinated cyclopentadithiophene/benzothiadiazole conjugated polymer. Macromol. 2012, 45 (13), 5427-5435.
    91. Misra, R.; Gautam, P. Tuning of the HOMO–LUMO gap of donor-substituted symmetrical and unsymmetrical benzothiadiazoles. Org. Biomol. Chem. 2014, 12 (29), 5448-5457.
    92. Kato, S. i.; Matsumoto, T.; Shigeiwa, M.; Gorohmaru, H.; Maeda, S.; Ishi‐i, T.; Mataka, S. Novel 2,1,3‐Benzothiadiazole‐Based Red‐Fluorescent Dyes with Enhanced Two‐Photon Absorption Cross‐Sections. Chem. Eur. J. 2006, 12 (8), 2303-2317.
    93. Alem, S.; Chu, T.-Y.; Tse, S. C.; Wakim, S.; Lu, J.; Movileanu, R.; Tao, Y.; Bélanger, F.; Désilets, D.; Beaupré, S.; Leclerc, M.; Rodman, S.; Waller, D.; Gaudiana, R. Effect of mixed solvents on PCDTBT:PC70BM based solar cells. Org. Electron. 2011, 12 (11), 1788-1793.
    94. Sethuraman, K.; Ochiai, S.; Kojima, K.; Mizutani, T. Performance of poly (3-hexylthiophene) organic field-effect transistors on cross-linked poly (4-vinyl phenol) dielectric layer and solvent effects. Appl. Phys. Lett. 2008, 92 (18), 162.

    QR CODE