簡易檢索 / 詳目顯示

研究生: 陳艾玫
Ai-Mei Chen
論文名稱: 使用BEAM/EGS4蒙地卡羅程式模擬電子射束於小照野下之劑量分佈
Simulation of Electron Beams in Small Field Using BEAM/EGS4 Monte Carlo Code
指導教授: 董傳中
Chuan-Jong Tung
李宗其
Chung-Chi Lee
趙自強
Tsi-Chian Chao
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 70
中文關鍵詞: 蒙地卡羅模擬電子射束小照野
外文關鍵詞: Monte Carlo simulation, electron beam, small field
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 建立以直線加速器為基礎可廣泛使用之小動物照射系統是臨床動物實驗的一個重要的過程,本文為電子照射系統發展之初步研究,主要探討6 MeV與18 MeV電子射束於小照野下之劑量分佈與特性。本研究提出以電子射束來取代先前研究者使用的光子射束來發展此一系統。在Varian 2100 C/D直線加速器上建立小動物照射系統,並以6×6 cm2電子照射筒下方放置不同大小的鉛合金擋塊限制出小照野(直徑30 mm、14 mm、6 mm、4 mm圓形照野),之後以蒙地卡羅BEAMnrc06模擬程式模擬6 MeV與18 MeV電子射束於小照野下之劑量分佈,使用diamond detector與XV film分別測量直徑30 mm與4 mm小照野下之劑量分佈與輸出因子,以驗證模擬系統的準確性。研究結果顯示,diamond detector測量直徑30 mm圓形照野之百分深度劑量曲線與模擬結果差異為±2.2%,劑量剖面之FWHM差異小於0.5 mm,然而因偵檢器解析度限制,使直徑4 mm照野下百分深度劑量曲線與模擬不盡相符,劑量剖面差異有1.2 mm;此外,模擬6 MeV與18 MeV電子射束在直徑4 mm圓形照野下,R90深度之半高全寬分別為8.1 mm與4.7 mm,輸出因子分別為0.13與0.61,說明了使用電子射束照射小動物的可行性。


    摘要 誌謝 目錄 圖目錄 表目錄 第一章 緒論 第二章 材料與方法 2.1動物電子照射系統 2.2動物電子照射系統之模擬 2.2.1模擬直線加速器機頭 2.2.2模擬參數最佳化 2.3小照野劑量模擬 2.4測量電子射束在水中之劑量分佈及輸出因子 2.4.1 大照野劑量分佈測量 2.4.2 小照野劑量分佈測量 第三章 模擬參數選擇 3.1 入射電子能量 3.2 電子作用截面之最低能量(AE)與電子截止能量(ECUT) 3.3 水假體像素分割大小 3.4 改變X/Y準直儀大小對劑量分布之影響 3.5 大照野劑量模擬 第四章 結果與討論 4.1小照野劑量模擬 4.1.1深度劑量曲線與輸出因子 4.1.2相對劑量剖面與平面 4.2電子射束於小動物作照射系統之可行性評估 第五章 結論 參考文獻 附錄

    1. Beckmann, N., et al., In vivo mouse imaging and spectroscopy in drug discovery. NMR Biomed, 2007. 20(3): p. 154-85.
    2. Herschman, H.R., Micro-PET imaging and small animal models of disease. Curr Opin Immunol, 2003. 15(4): p. 378-84.
    3. Idbaih, A., et al., Altered cerebral glucose metabolism in an animal model of diabetes insipidus: a micro-PET study. Brain Res, 2007. 1158: p. 164-8.
    4. Daniel A. Low, Milos Vicic, and Sasa Mutic, microRT: A Conformal Small Animal Irradiator. IEEE, 2004.
    5. 林怡君,應用蒙地卡羅方法模擬放射手術之小照野劑量分佈. 國立清華大學碩士論文, 2006.
    6. Tryggestad, E., et al., The Small-Animal Radiation Research Platform (SARRP): Commissioning a 225 KVp "small-Field" X-Ray Source for Monte Carlo-Based Treatment Planning. Medical Physics, 2006. 33(6): p. 2241.
    7. Deng, H., et al., The small-animal radiation research platform (SARRP): dosimetry of a focused lens system. Phys Med Biol, 2007. 52(10): p. 2729-40.
    8. Khan, F.M., et al., Clinical electron-beam dosimetry: report of AAPM Radiation Therapy Committee Task Group No. 25. Med Phys, 1991. 18(1): p. 73-109.
    9. Varian Oncology Systems:Monte Carlo Project. Confidential Informaition.
    10. Kassaee, A., et al., Influence of cone design on the electron beam characteristics on clinical accelerators. Med Phys, 1994. 21(11): p. 1671-6.
    11. Biggs, P.J., A.L. Boyer, and K.P. Doppke, Electron dosimetry of irregular fields on the Clinac 18. Int J Radiat Oncol Biol Phys, 1979. 5(3): p. 433-40.
    12. P.J., B., B. A.L., and D. K.P., Electron dosimetry of irregular fields on the Clinac-18. Int J Radiat Oncol Biol Phys, 1979.
    13. Chetty, I.J., et al., Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Medical Physics, 2007. 34(12): p. 4818-4853.
    14. Jaffray, D.A., et al., X-ray sources of medical linear accelerators: focal and extra-focal radiation. Med Phys, 1993. 20(5): p. 1417-27.
    15. D.W.O. Rogers, B. Walters, and I. Kawrakow, BEAMnrc Users Manual NRCC Report.
    16. Aljarrah, K., et al., Determination of the initial beam parameters in Monte Carlo linac simulation. Med Phys, 2006. 33(4): p. 850-8.
    17. Deasy, J.O., P.R. Almond, and M.T. McEllistrem, The spectral dependence of electron central-axis depth-dose curves. Med Phys, 1994. 21(9): p. 1369-76.
    18. 彭宇民,蒙地卡羅模擬瓦里安21EX醫用直線加速器6MV光子射束之初始電子參數最佳化. 國立清華大學碩士論文, 2006.
    19. 朱哲興,應用抗氧化聚合物膠體劑量計測量光子射束在小照野下之吸收劑量. 國立清華大學碩士論文,2007.
    20. Gerbi, B.J. and D.A. Dimitroyannis, The response of Kodak EDR2 film in high-energy electron beams. Med Phys, 2003. 30(10): p. 2703-5.
    21. Laub, W.U., T.W. Kaulich, and F. Nusslin, A diamond detector in the dosimetry of high-energy electron and photon beams. Phys Med Biol, 1999. 44(9): p. 2183-92.
    22. Heydarian, M., Evaluation of a PTW diamond detector for electron beam measurements. Phys Med Biol, 1993. 38.
    23. Stojadinovic, S., et al., Progress toward a microradiation therapy small animal conformal irradiator. Med Phys, 2006. 33(10): p. 3834-45.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE