簡易檢索 / 詳目顯示

研究生: 林政賢
Cheng-Hsien Lin
論文名稱: 以深共熔溶劑及反溶劑法製備氧化鋅粒子
Fabrication of ZnO particles using deep eutectic solvents and antisolvent
指導教授: 汪上曉
David Shan-Hill Wong
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 95
語文別: 中文
論文頁數: 96
中文關鍵詞: 氧化鋅離子液體深共熔溶劑反溶劑深共熔溶劑-液體反溶劑
外文關鍵詞: Zinc oxide, ZnO, Ionic liquids, ILs, deep eutectic solvents, DESs, antisolvent, deep eutectic solvent-liquid antisolvent, DES-LAS
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出在室溫常壓下液相製備氧化鋅的方法,所使用的液相為水溶液和深共熔溶劑(deep eutectic solvents, DESs)所組成,其溶液性質不具毒性和腐蝕性,為對環境無害的綠色溶劑(green solvents)。

    在製備氧化鋅的機制上,不同於一般化學合成法,本論文使用類似超臨界流體製備奈米顆粒的反溶劑法,首創液體反溶劑法,添加液體反溶劑於含氧化鋅的深共熔溶劑中,使得在液相中的氧化鋅溶解度下降而析出沉澱。

    在實驗變因方面,本論文探討了不同滴定方式、被滴定溶劑溫度、被滴定溶劑攪拌速度、滴定時間和滴定完成後持續攪拌時間等變因。在不同的變因之下,實驗結果已成功製備出不同型態(morphology)的氧化鋅,包含有沿生長方向截面積改變的兩頭尖和兩頭平狀氧化鋅、紡錘狀(spindle-like)氧化鋅、橢圓狀(ellipsoidal)氧化鋅、長橢圓狀(long ellipsoidal)氧化鋅、啞鈴狀(dumbbell-like)氧化鋅等。


    誌謝 I 摘要 II 目錄 III 圖目錄 VI 表目錄 IX 第一章、緒論 1 一.1 離子液體簡介 1 一.2 氧化鋅簡介 3 一.3 研究動機、目的 與 各章編排 5 第二章、文獻回顧 6 二.1 離子液體的發展 6 二.1.1 熔鹽(Molten Salts) 6 二.1.2 咪唑型離子液體 6 二.1.3 氯化膽鹼離子液體 8 二.2 深共熔溶劑的性質與應用 11 二.2.1 熔點(Melting Point) 11 二.2.2 黏度(Viscosity) 12 二.2.3 導電度(Conductivity) 13 二.2.4 表面張力(Surface Tension) 15 二.2.5 陰離子錯合物(Complex Anion) 16 二.2.6 深共熔溶劑的應用 17 二.3 奈米氧化鋅的製備 18 二.3.1 氣相合成法(Vapor Transport Synthesis) 18 二.3.1.1 氣固法(Catalyst Free Vapor-Solid, VS) 18 二.3.1.2 氣液固法(Catalyst Assisted Vapor-Liquid-Solid, VLS) 22 二.3.2 液相合成法(Liquid Phase Synthesis) 26 二.3.2.1 水熱法(Hydrothermal Method) 26 二.3.2.2 沉澱法(Precipitation Method) 28 二.3.2.3 微乳化法(Microemulsion Method) 30 二.4 超臨界反溶劑(Supercritical Antisolvent) 32 第三章、實驗 34 三.1 實驗原理 34 三.2 實驗藥品 35 三.3 實驗器材 36 三.4 分析儀器 38 三.5 實驗步驟 39 三.5.1 製備UCC深共熔溶劑 39 三.5.2 深共熔溶劑-液體反溶劑(Deep Eutectic Solvent-Liquid Antisolvent, DES-LAS) 39 三.5.3 氧化鋅粉末檢測 41 第四章、結果與討論 43 四.1 含氧化鋅深共熔溶劑的製備 43 四.2 基本反溶劑析出實驗 45 四.2.1 Test 1∼4 46 四.2.2 Test 5∼6 55 四.2.3 Test 7∼8 59 四.2.4 Test 9∼10 62 四.2.4 Test 11∼12 68 四.2.5 Summary 73 四.3 UCC於70°C下滴定H2O&CTAB反溶劑析出實驗 75 四.3.1 PL(Photoluminescence) 75 四.3.2 滴定時間 76 四.3.3 滴定完成後持續攪拌時間 79 四.3.4 被滴定溶劑攪拌速率 79 四.4 縮短滴定完成後持續攪拌時間 81 第五章、結論 86 第六章、參考文獻 87

    1.R.A. Sheldon, (1993). The Role of Catalysis in Waste Minization. In Precision process technology: perspectives for pollution prevention, eds. Weijnen M.P.C. and Drinkenburg A.A.H., Kluwer, Dordrecht, pp 125-138.
    2.K.R. Seddon, (1997). Ionic liquids for clean technology. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY 68 (4): 351-356.
    3.P.T. Anastas and J.B. Zimmerman, (2003). Design through the 12 principles of green engineering. ENVIRONMENTAL SCIENCE & TECHNOLOGY 37 (5): 94A-101A.
    4.M. Freemantle, (1998). Designer solvents - Ionic liquids may boost clean technology development. CHEMICAL & ENGINEERING NEWS 76 (13): 32-37.
    5.M.H. Huang, Y.Y. Wu, H. Feick, N. Tran, E. Weber and P.D. Yang, (2001). Catalytic growth of zinc oxide nanowires by vapor transport. ADVANCED MATERIALS 13 (2): 113-116.
    6.Y.Y. Wu, R. Fan and P.D. Yang, (2002). Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires. NANO LETTERS 2 (2): 83-86.
    7.P.M. Ajayan, L.S. Schadler, C. Giannaris and A. Rubio, (2000). Single-walled carbon nanotube-polymer composites: Strength and weakness. ADVANCED MATERIALS 12 (10): 750-753.
    8.T. Seeger, P. Kohler-Redlich and M. Ruhle, (2000). Synthesis of nanometer-sized SiC whiskers in the arc-discharge. ADVANCED MATERIALS 12 (4): 279-282.
    9.J.D. Holmes, K.P. Johnston, R.C. Doty and B.A. Korgel, (2000). Control of thickness and orientation of solution-grown silicon nanowires. SCIENCE 287 (5457): 1471-1473.
    10.Y. Li, G.W. Meng, L.D. Zhang and F. Phillipp, (2000). Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties. APPLIED PHYSICS LETTERS 76 (15): 2011-2013.
    11.M. Chen, Z.L. Pei, X. Wang, C. Sung and L.S. Wen, (2001). Structural, electrical, and optical properties of transparent conductive oxide ZnO : Al films prepared by dc magnetron reactive sputtering. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A 19 (3): 963-970.
    12.S.M Sze, (1985). SEMICONDUCTOR DEVICES physics and technology. Wiley, New York.
    13.Z.K. Tang, G.K.L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma and Y. Segawa, (1998). Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. APPLIED PHYSICS LETTERS 72 (25): 3270-3272.
    14.Z.L. Wang, (2004). Nanostructures of zinc oxide. Materials Today 7 (6): 26-33.
    15.P. Walden, (1914). Molecular Weights and Electrical Conductivity of Several Fused Salts. Bulletin Academic Imperical Science. (St. Petersburg): 405-422.
    16.I.M. Herfort and H. Schneider, (1991). Spectroscopic studies of the solvent polarities of room-temperature liquid ethylammonium nitrate and its mixtures with polar-solvents. LIEBIGS ANNALEN DER CHEMIE (1): 27-31.
    17.a) F.H. Hurley, (1948). U.S.Patent, 2446331. b) F.H. Jurley and T.P. Wier, (1951). The electrodeposition of aluminum from nonaqueous solutions at room temperature. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 98 (5): 207-212.
    18.H.L. Chum, V.R. Koch, L.L. Miller and R.A. Osteryoung, (1975). Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 97 (11): 3264-3265.
    19.J. Robinson and R.A. Osteryoung, (1979). An electrochemical and spectroscopic study of some aromatic hydrocarbons in the room temperature molten salt system aluminum chloride-n-butylpyridinium chloride. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 101 (2): 323-327.
    20.J.S. Wilkes, J.A. Levisky, R.A. Wilson and C.L. Hussey, (1982). Dialkylimidazolium chloroaluminate melts - a new class of room-temperature ionic liquids for electrochemistry, spectroscopy, and synthesis. INORGANIC CHEMISTRY 21 (3): 1263-1264.
    21.K.M. Dieter, C.J. Dymek, Jr., N.E. Heimer, J.W. Rovang and J.S. Wilkes, (1988). Ionic structure and interactions in 1-methyl-3-ethylimidazolium chloride-aluminum chloride molten salts. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 110 (9): 2722-2726.
    22.D. Appleby, C.L. Hussey, K.R. Seddon and J.E. Turp, (1986). Room-temperature ionic liquids as solvents for electronic absorption-spectroscopy of halide-complexes. NATURE 323 (6089): 614-616.
    23.C.L. Hussey, (1988). Room-temperature haloaluminate ionic liquids-novel solvents for transition-metal solution chemistry. PURE AND APPLIED CHEMISTRY 60 (12): 1763-1772.
    24.J.S. Wilkes and M.J. Zaworotko, (1992). Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS (13): 965-967.
    25.P. Bonhote, A.P. Dias, N. Papageorgiou, K. Kalyanasundaram and M. Gratzel, (1996). Hydrophobic, highly conductive ambient-temperature molten salts. INORGANIC CHEMISTRY 35 (5): 1168-1178.
    26.A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed and V. Tambyrajah, (2003). Novel solvent properties of choline chloride/urea mixtures. CHEMICAL COMMUNICATIONS (1): 70-71.
    27.A.P. Abbott, D. Boothby, G. Capper, D.L. Davies and R.K. Rasheed, (2004). Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 126 (29): 9142-9147.
    28.A.P. Abbott, G. Capper, D.L. Davies, K.J. McKenzie and S.U. Obi, (2006). Solubility of metal oxides in deep eutectic solvents based on choline chloride. JOURNAL OF CHEMICAL AND ENGINEERING DATA 51 (4): 1280-1282.
    29.E.R. Parnham, E.A. Drylie, P.S. Wheatley, A.M.Z. Slawin and R.E. Morris, (2006). Ionothermal materials synthesis using unstable deep-eutectic solvents as template-delivery agents. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION 45 (30): 4962-4966.
    30.A.P. Abbott, G. Capper, K.J. McKenzie and K.S. Ryder, (2007). Electrodeposition of zinc-tin alloys from deep eutectic solvents based on choline chloride. JOURNAL OF ELECTROANALYTICAL CHEMISTRY 599 (2): 288-294.
    31.A.P. Abbott, G. Capper, K.J. McKenzie, A. Glidle and K.S. Ryder, (2006). Electropolishing of stainless steels in a choline chloride based ionic liquid: an electrochemical study with surface characterisation using SEM and atomic force microscopy. PHYSICAL CHEMISTRY CHEMICAL PHYSICS 8 (36): 4214-4221.
    32.A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed and P. Shikotra, (2005). Selective extraction of metals from mixed oxide matrixes using choline-based ionic liquids. INORGANIC CHEMISTRY 44 (19): 6497-6499.
    33.X.Y. Kong and Z.L. Wang, (2003). Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. NANO LETTERS 3 (12): 1625-1631.
    34.H.Y. Dang, J. Wang and S.S. Fan, (2003). The synthesis of metal oxide nanowires by directly heating metal samples in appropriate oxygen atmospheres. NANOTECHNOLOGY 14 (7): 738-741.
    35.P.C. Chang, Z.Y. Fan, D.W. Wang, W.Y. Tseng, W.A. Chiou, J. Hong and J.G. Lu, (2004). ZnO nanowires synthesized by vapor trapping CVD method. CHEMISTRY OF MATERIALS 16 (24): 5133-5137.
    36.P.D. Yang, H.Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R.R. He and H.J. Choi, (2002). Controlled growth of ZnO nanowires and their optical properties. ADVANCED FUNCTIONAL MATERIALS 12 (5): 323-331.
    37.M.H. Huang, Y.Y. Wu, H. Feick, N. Tran, E. Weber and P.D. Yang, (2001). Catalytic growth of zinc oxide nanowires by vapor transport. ADVANCED MATERIALS 13 (2): 113-116.
    38.Z.L. Wang, (2004). ZnO oxide nanostructures: growth, properties and applications. JOURNAL OF PHYSICS: CONDENSED MATTER 16: R829-858.
    39.J.Y. Lao, J.G. Wen and Z.F. Ren, (2002). Hierarchical ZnO nanostructures. NANO LETTERS 2 (11): 1287-1291.
    40.B.D. Yao, Y.F. Chan and N. Wang, (2002). Formation of ZnO nanostructures by a simple way of thermal evaporation. APPLIED PHYSICS LETTERS 81 (4): 757-759.
    41.Z.L. Wang, X.Y. Kong and J.M. Zuo, (2003). Induced growth of asymmetric nanocantilever arrays on polar surfaces. PHYSICAL REVIEW LETTERS 91 (18): Art. No. 185502.
    42.X.Y. Kong, Y. Ding, R. Yang and Z.L. Wang, (2004). Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. SCIENCE 303 (5662): 1348-1351.
    43.R.S. Wagner and W.C. Ellis, (1964). Vapor-liquid-solid mechanism of single crystal growth. APPLIED PHYSICS LETTERS 4 (5): 89-90.
    44.M.A. Verheijen, G. Immink, T. de Smet and M.T. Borgstrom, (2006). Bakkers EPAM growth kinetics of heterostructured GaP-GaAs nanowires. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 128 (4): 1353-1359.
    45.Y.W. Wang, L.D. Zhang, C.H. Liang, G.Z. Wang and X.S. Peng, (2002). Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires. CHEMICAL PHYSICS LETTERS 357 (3-4): 314-318.
    46.E.A. Stach, P.J. Pauzauskie, T. Kuykendall, J. Goldberger, R.R. He and P.D. Yang, (2003). Watching GaN nanowires grow. NANO LETTERS 3 (6): 867-869.
    47.M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo and P.D. Yang, (2001). Room-temperature ultraviolet nanowire nanolasers. SCIENCE 292 (5523): 1897-1899.
    48.S.Y. Li, C.Y. Lee and T.Y. Tseng, (2003). Copper-catalyzed ZnO nanowires on silicon (100) grown by vapor-liquid-solid process. JOURNAL OF CRYSTAL GROWTH 247 (3-4): 357-362.
    49.C.J. Lee, T.J. Lee, S.C. Lyu, Y. Zhang, H. Ruh and H.J. Lee, (2002). Field emission from well-aligned zinc oxide nanowires grown at low temperature. APPLIED PHYSICS LETTERS 81 (19): 3648-3650.
    50.P.X. Gao, Y. Ding and I.L. Wang, (2003). Crystallographic orientation-aligned ZnO nanorods grown by a tin catalyst. NANO LETTERS 3 (9): 1315-1320.
    51.P.X. Gao and Z.L. Wang, (2004). Nanopropeller arrays of zinc oxide. APPLIED PHYSICS LETTERS 84 (15): 2883-2885.
    52.P.X. Gao and Z.L. Wang, (2003). Mesoporous polyhedral cages and shells formed by textured self-assembly of ZnO nanocrystals. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 125 (37): 11299-11305.
    53.B. Liu and H.C. Zeng, (2003). Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 125 (15): 4430-4431.
    54.B. Cheng and E.T. Samulski, (2004). Hydrothermal synthesis of one-dimensional ZnO nanostructures with different aspect ratios. CHEMICAL COMMUNICATIONS (8): 986-987.
    55.A. Chittofrati and E. Matijevic, (1990). Uniform particles of zinc-oxide of different morphologies. COLLOIDS AND SURFACES 48 (1-3): 65-78.
    56.E.A. Meulenkamp, (1998). Synthesis and growth of ZnO nanoparticles. JOURNAL OF PHYSICAL CHEMISTRY B 102 (29): 5566-5572.
    57.S. Music, D. Dragcevic and S. Popovic, (2007). Influence of synthesis route on the formation of ZnO particles and their morphologies. JOURNAL OF ALLOYS AND COMPOUNDS 429 (1-2): 242-249.
    58.M. Castellano and E. Matijevic, (1989). Uniform colloidal zinc compounds of various morphologies. CHEMISTRY OF MATERIALS 1 (1): 78-82.
    59.M. Singhal, V. Chhabra, P. Kang and D.O. Shah, (1997). Synthesis of ZnO nanoparticles for varistor application using Zn-substituted aerosol OT microemulsion. MATERIALS RESEARCH BULLETIN 32 (2): 239-247.
    60.T. Ahmad, S. Vaidya, N. Sarkar, S. Ghosh and A.K. Ganguli, (2006). Zinc oxalate nanorods: a convenient precursor to uniform nanoparticles of ZnO. NANOTECHNOLOGY 17 (5): 1236-1240.
    61.A. Martin, L. Gutierrez, F. Mattea and M.J. Cocero, (2007). Precipitation of mandelic acid with a supercritical antisolvent process: Experimental and theoretical analysis, optimization, and scaleup. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH 46 (5): 1552-1562.
    62.E. Reverchon, G. Della Porta, D. Sannino and P. Ciambelli, (1999). Supercritical antisolvent precipitation of nanoparticles of a zinc oxide precursor. POWDER TECHNOLOGY 102 (2): 127-134.
    63.P. Chattopadhyay and R.B. Gupta, (2001). Production of antibiotic nanoparticles using supercritical CO2 as antisolvent with enhanced mass transfer. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH 40 (16): 3530-3539.
    64.M. Kitano, T. Okabe and M. Shiojiri, (1995). Growth of electrocrystallized ZnO particles by reaction of vacuum-deposited Zn films with distilled water. JOURNAL OF CRYSTAL GROWTH 152 (1-2): 73-78.
    65.M. Kitano, T. Okabe and M. Shiojiri, (1996). Morphology and growth mechanism of ZnO particles electro-crystallized on Zn in aqueous solution. JOURNAL OF CRYSTAL GROWTH 166 (1-4): 1116-1120.
    66.S. Komarneni, M. Bruno and E. Mariani, (2000). Synthesis of ZnO with and without microwaves. MATERIALS RESEARCH BULLETIN 35 (11): 1843-1847.
    67.Y. Masuda, N. Kinoshita, F. Sato and K. Koumoto, (2006). Site-selective deposition and morphology control of UV- and visible-light-emitting ZnO Crystals. CRYSTAL GROWTH & DESIGN 6 (1): 75-78.
    68.J.M. Crowley, A.L.G Rees and J.A. Spink, (1951). The morphology of zinc oxide smoke particles. PROCEEDINGS OF THE PHYSICAL SOCIETY B, 64: 638-644.
    69.M.N. Fuller, (1944). Twinning in zinc oxide. JOURNAL OF APPLIED PHYSICS 15 (2): 164-170.
    70.R.A. Laudise and A.A. Ballman, (1960). Hydrothermal synthesis of zinc oxide and zinc sulfide. THE JOURNAL OF PHYSICAL CHEMISTRY 60(5): 688-691.
    71.W.J. Li, E.W. Shi, W.Z. Zhong and Z.W. Yin, (1999). Growth mechanism and growth habit of oxide crystals. JOURNAL OF CRYSTAL GROWTH 203 (1-2): 186-196.
    72.R.B. Kale and S.Y. Lu, (2007). Structural, morphological, and optical properties of double-ended needle-like ultra-long ZnO micro/nanorods. JOURNAL OF PHYSICS-CONDENSED MATTER 19 (9): Art. No. 096209.
    73.B.G. Wang, E.W. Shi and W.Z. Zhong, (1998). Twinning morphologies and mechanisms of ZnO crystallites under hydrothermal conditions. CRYSTAL RESEARCH AND TECHNOLOGY 33 (6): 937-941.
    74.H. Zhang, D.R. Yang, D.S. Li, X.Y. Ma, S.Z. Li and D.L. Que, (2005). Controllable growth of ZnO microcrystals by a capping-molecule-assisted hydrothermal process. CRYSTAL GROWTH & DESIGN 5 (2): 547-550.
    75.N. Wang, H. Lin, J.B. Li, L.Z. Zhang, X. Li, J. Wu and C.F. Lin, (2007). Strong orange luminescence from a novel hexagonal ZnO nanosheet film grown on aluminum substrate by a simple wet-chemical approach. JOURNAL OF THE AMERICAN CERAMIC SOCIETY 90 (2): 635-637.
    76.A. Umar and Y.B. Hahn, (2006). ZnO nanosheet networks and hexagonal nanodiscs grown on silicon substrate: growth mechanism and structural and optical properties. NANOTECHNOLOGY 17 (9): 2174-2180.
    77.J.Y. Lao, J.Y. Huang, D.Z. Wang, Z.F. Ren, D. Steeves, B. Kimball and W. Porter, (2004). ZnO nanowalls. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING 78 (4): 539-542.
    78.R.A. McBride, J.M. Kelly and D.E. McCormack, (2003). Growth of well-defined ZnO microparticles by hydroxide ion hydrolysis of zinc salts. JOURNAL OF MATERIALS CHEMISTRY 13 (5): 1196-1201.
    79.A.P.A. Oliveira, J.F. Hochepied, F. Grillon and M.H. Berger, (2003). Controlled precipitation of zinc oxide particles at room temperature. CHEMISTRY OF MATERIALS 15 (16): 3202-3207.
    80.L. Khomenkova, P. Fernandez and J. Piqueras, (2007). ZnO nanostructured microspheres and elongated structures grown by thermal treatment of ZnS powder. CRYSTAL GROWTH & DESIGN 7 (4): 836-839.
    81.Y.H. Ni, X.W. Wei, X. Ma and J.M. Hong, (2005). CTAB assisted one-pot hydrothermal synthesis of columnar hexagonal-shaped ZnO crystals. JOURNAL OF CRYSTAL GROWTH 283 (1-2): 48-56.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE