研究生: |
林政賢 Cheng-Hsien Lin |
---|---|
論文名稱: |
以深共熔溶劑及反溶劑法製備氧化鋅粒子 Fabrication of ZnO particles using deep eutectic solvents and antisolvent |
指導教授: |
汪上曉
David Shan-Hill Wong |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2006 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 96 |
中文關鍵詞: | 氧化鋅 、離子液體 、深共熔溶劑 、反溶劑 、深共熔溶劑-液體反溶劑 |
外文關鍵詞: | Zinc oxide, ZnO, Ionic liquids, ILs, deep eutectic solvents, DESs, antisolvent, deep eutectic solvent-liquid antisolvent, DES-LAS |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出在室溫常壓下液相製備氧化鋅的方法,所使用的液相為水溶液和深共熔溶劑(deep eutectic solvents, DESs)所組成,其溶液性質不具毒性和腐蝕性,為對環境無害的綠色溶劑(green solvents)。
在製備氧化鋅的機制上,不同於一般化學合成法,本論文使用類似超臨界流體製備奈米顆粒的反溶劑法,首創液體反溶劑法,添加液體反溶劑於含氧化鋅的深共熔溶劑中,使得在液相中的氧化鋅溶解度下降而析出沉澱。
在實驗變因方面,本論文探討了不同滴定方式、被滴定溶劑溫度、被滴定溶劑攪拌速度、滴定時間和滴定完成後持續攪拌時間等變因。在不同的變因之下,實驗結果已成功製備出不同型態(morphology)的氧化鋅,包含有沿生長方向截面積改變的兩頭尖和兩頭平狀氧化鋅、紡錘狀(spindle-like)氧化鋅、橢圓狀(ellipsoidal)氧化鋅、長橢圓狀(long ellipsoidal)氧化鋅、啞鈴狀(dumbbell-like)氧化鋅等。
1.R.A. Sheldon, (1993). The Role of Catalysis in Waste Minization. In Precision process technology: perspectives for pollution prevention, eds. Weijnen M.P.C. and Drinkenburg A.A.H., Kluwer, Dordrecht, pp 125-138.
2.K.R. Seddon, (1997). Ionic liquids for clean technology. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY 68 (4): 351-356.
3.P.T. Anastas and J.B. Zimmerman, (2003). Design through the 12 principles of green engineering. ENVIRONMENTAL SCIENCE & TECHNOLOGY 37 (5): 94A-101A.
4.M. Freemantle, (1998). Designer solvents - Ionic liquids may boost clean technology development. CHEMICAL & ENGINEERING NEWS 76 (13): 32-37.
5.M.H. Huang, Y.Y. Wu, H. Feick, N. Tran, E. Weber and P.D. Yang, (2001). Catalytic growth of zinc oxide nanowires by vapor transport. ADVANCED MATERIALS 13 (2): 113-116.
6.Y.Y. Wu, R. Fan and P.D. Yang, (2002). Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires. NANO LETTERS 2 (2): 83-86.
7.P.M. Ajayan, L.S. Schadler, C. Giannaris and A. Rubio, (2000). Single-walled carbon nanotube-polymer composites: Strength and weakness. ADVANCED MATERIALS 12 (10): 750-753.
8.T. Seeger, P. Kohler-Redlich and M. Ruhle, (2000). Synthesis of nanometer-sized SiC whiskers in the arc-discharge. ADVANCED MATERIALS 12 (4): 279-282.
9.J.D. Holmes, K.P. Johnston, R.C. Doty and B.A. Korgel, (2000). Control of thickness and orientation of solution-grown silicon nanowires. SCIENCE 287 (5457): 1471-1473.
10.Y. Li, G.W. Meng, L.D. Zhang and F. Phillipp, (2000). Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties. APPLIED PHYSICS LETTERS 76 (15): 2011-2013.
11.M. Chen, Z.L. Pei, X. Wang, C. Sung and L.S. Wen, (2001). Structural, electrical, and optical properties of transparent conductive oxide ZnO : Al films prepared by dc magnetron reactive sputtering. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A 19 (3): 963-970.
12.S.M Sze, (1985). SEMICONDUCTOR DEVICES physics and technology. Wiley, New York.
13.Z.K. Tang, G.K.L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma and Y. Segawa, (1998). Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. APPLIED PHYSICS LETTERS 72 (25): 3270-3272.
14.Z.L. Wang, (2004). Nanostructures of zinc oxide. Materials Today 7 (6): 26-33.
15.P. Walden, (1914). Molecular Weights and Electrical Conductivity of Several Fused Salts. Bulletin Academic Imperical Science. (St. Petersburg): 405-422.
16.I.M. Herfort and H. Schneider, (1991). Spectroscopic studies of the solvent polarities of room-temperature liquid ethylammonium nitrate and its mixtures with polar-solvents. LIEBIGS ANNALEN DER CHEMIE (1): 27-31.
17.a) F.H. Hurley, (1948). U.S.Patent, 2446331. b) F.H. Jurley and T.P. Wier, (1951). The electrodeposition of aluminum from nonaqueous solutions at room temperature. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 98 (5): 207-212.
18.H.L. Chum, V.R. Koch, L.L. Miller and R.A. Osteryoung, (1975). Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 97 (11): 3264-3265.
19.J. Robinson and R.A. Osteryoung, (1979). An electrochemical and spectroscopic study of some aromatic hydrocarbons in the room temperature molten salt system aluminum chloride-n-butylpyridinium chloride. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 101 (2): 323-327.
20.J.S. Wilkes, J.A. Levisky, R.A. Wilson and C.L. Hussey, (1982). Dialkylimidazolium chloroaluminate melts - a new class of room-temperature ionic liquids for electrochemistry, spectroscopy, and synthesis. INORGANIC CHEMISTRY 21 (3): 1263-1264.
21.K.M. Dieter, C.J. Dymek, Jr., N.E. Heimer, J.W. Rovang and J.S. Wilkes, (1988). Ionic structure and interactions in 1-methyl-3-ethylimidazolium chloride-aluminum chloride molten salts. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 110 (9): 2722-2726.
22.D. Appleby, C.L. Hussey, K.R. Seddon and J.E. Turp, (1986). Room-temperature ionic liquids as solvents for electronic absorption-spectroscopy of halide-complexes. NATURE 323 (6089): 614-616.
23.C.L. Hussey, (1988). Room-temperature haloaluminate ionic liquids-novel solvents for transition-metal solution chemistry. PURE AND APPLIED CHEMISTRY 60 (12): 1763-1772.
24.J.S. Wilkes and M.J. Zaworotko, (1992). Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS (13): 965-967.
25.P. Bonhote, A.P. Dias, N. Papageorgiou, K. Kalyanasundaram and M. Gratzel, (1996). Hydrophobic, highly conductive ambient-temperature molten salts. INORGANIC CHEMISTRY 35 (5): 1168-1178.
26.A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed and V. Tambyrajah, (2003). Novel solvent properties of choline chloride/urea mixtures. CHEMICAL COMMUNICATIONS (1): 70-71.
27.A.P. Abbott, D. Boothby, G. Capper, D.L. Davies and R.K. Rasheed, (2004). Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 126 (29): 9142-9147.
28.A.P. Abbott, G. Capper, D.L. Davies, K.J. McKenzie and S.U. Obi, (2006). Solubility of metal oxides in deep eutectic solvents based on choline chloride. JOURNAL OF CHEMICAL AND ENGINEERING DATA 51 (4): 1280-1282.
29.E.R. Parnham, E.A. Drylie, P.S. Wheatley, A.M.Z. Slawin and R.E. Morris, (2006). Ionothermal materials synthesis using unstable deep-eutectic solvents as template-delivery agents. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION 45 (30): 4962-4966.
30.A.P. Abbott, G. Capper, K.J. McKenzie and K.S. Ryder, (2007). Electrodeposition of zinc-tin alloys from deep eutectic solvents based on choline chloride. JOURNAL OF ELECTROANALYTICAL CHEMISTRY 599 (2): 288-294.
31.A.P. Abbott, G. Capper, K.J. McKenzie, A. Glidle and K.S. Ryder, (2006). Electropolishing of stainless steels in a choline chloride based ionic liquid: an electrochemical study with surface characterisation using SEM and atomic force microscopy. PHYSICAL CHEMISTRY CHEMICAL PHYSICS 8 (36): 4214-4221.
32.A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed and P. Shikotra, (2005). Selective extraction of metals from mixed oxide matrixes using choline-based ionic liquids. INORGANIC CHEMISTRY 44 (19): 6497-6499.
33.X.Y. Kong and Z.L. Wang, (2003). Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. NANO LETTERS 3 (12): 1625-1631.
34.H.Y. Dang, J. Wang and S.S. Fan, (2003). The synthesis of metal oxide nanowires by directly heating metal samples in appropriate oxygen atmospheres. NANOTECHNOLOGY 14 (7): 738-741.
35.P.C. Chang, Z.Y. Fan, D.W. Wang, W.Y. Tseng, W.A. Chiou, J. Hong and J.G. Lu, (2004). ZnO nanowires synthesized by vapor trapping CVD method. CHEMISTRY OF MATERIALS 16 (24): 5133-5137.
36.P.D. Yang, H.Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R.R. He and H.J. Choi, (2002). Controlled growth of ZnO nanowires and their optical properties. ADVANCED FUNCTIONAL MATERIALS 12 (5): 323-331.
37.M.H. Huang, Y.Y. Wu, H. Feick, N. Tran, E. Weber and P.D. Yang, (2001). Catalytic growth of zinc oxide nanowires by vapor transport. ADVANCED MATERIALS 13 (2): 113-116.
38.Z.L. Wang, (2004). ZnO oxide nanostructures: growth, properties and applications. JOURNAL OF PHYSICS: CONDENSED MATTER 16: R829-858.
39.J.Y. Lao, J.G. Wen and Z.F. Ren, (2002). Hierarchical ZnO nanostructures. NANO LETTERS 2 (11): 1287-1291.
40.B.D. Yao, Y.F. Chan and N. Wang, (2002). Formation of ZnO nanostructures by a simple way of thermal evaporation. APPLIED PHYSICS LETTERS 81 (4): 757-759.
41.Z.L. Wang, X.Y. Kong and J.M. Zuo, (2003). Induced growth of asymmetric nanocantilever arrays on polar surfaces. PHYSICAL REVIEW LETTERS 91 (18): Art. No. 185502.
42.X.Y. Kong, Y. Ding, R. Yang and Z.L. Wang, (2004). Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. SCIENCE 303 (5662): 1348-1351.
43.R.S. Wagner and W.C. Ellis, (1964). Vapor-liquid-solid mechanism of single crystal growth. APPLIED PHYSICS LETTERS 4 (5): 89-90.
44.M.A. Verheijen, G. Immink, T. de Smet and M.T. Borgstrom, (2006). Bakkers EPAM growth kinetics of heterostructured GaP-GaAs nanowires. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 128 (4): 1353-1359.
45.Y.W. Wang, L.D. Zhang, C.H. Liang, G.Z. Wang and X.S. Peng, (2002). Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires. CHEMICAL PHYSICS LETTERS 357 (3-4): 314-318.
46.E.A. Stach, P.J. Pauzauskie, T. Kuykendall, J. Goldberger, R.R. He and P.D. Yang, (2003). Watching GaN nanowires grow. NANO LETTERS 3 (6): 867-869.
47.M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo and P.D. Yang, (2001). Room-temperature ultraviolet nanowire nanolasers. SCIENCE 292 (5523): 1897-1899.
48.S.Y. Li, C.Y. Lee and T.Y. Tseng, (2003). Copper-catalyzed ZnO nanowires on silicon (100) grown by vapor-liquid-solid process. JOURNAL OF CRYSTAL GROWTH 247 (3-4): 357-362.
49.C.J. Lee, T.J. Lee, S.C. Lyu, Y. Zhang, H. Ruh and H.J. Lee, (2002). Field emission from well-aligned zinc oxide nanowires grown at low temperature. APPLIED PHYSICS LETTERS 81 (19): 3648-3650.
50.P.X. Gao, Y. Ding and I.L. Wang, (2003). Crystallographic orientation-aligned ZnO nanorods grown by a tin catalyst. NANO LETTERS 3 (9): 1315-1320.
51.P.X. Gao and Z.L. Wang, (2004). Nanopropeller arrays of zinc oxide. APPLIED PHYSICS LETTERS 84 (15): 2883-2885.
52.P.X. Gao and Z.L. Wang, (2003). Mesoporous polyhedral cages and shells formed by textured self-assembly of ZnO nanocrystals. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 125 (37): 11299-11305.
53.B. Liu and H.C. Zeng, (2003). Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 125 (15): 4430-4431.
54.B. Cheng and E.T. Samulski, (2004). Hydrothermal synthesis of one-dimensional ZnO nanostructures with different aspect ratios. CHEMICAL COMMUNICATIONS (8): 986-987.
55.A. Chittofrati and E. Matijevic, (1990). Uniform particles of zinc-oxide of different morphologies. COLLOIDS AND SURFACES 48 (1-3): 65-78.
56.E.A. Meulenkamp, (1998). Synthesis and growth of ZnO nanoparticles. JOURNAL OF PHYSICAL CHEMISTRY B 102 (29): 5566-5572.
57.S. Music, D. Dragcevic and S. Popovic, (2007). Influence of synthesis route on the formation of ZnO particles and their morphologies. JOURNAL OF ALLOYS AND COMPOUNDS 429 (1-2): 242-249.
58.M. Castellano and E. Matijevic, (1989). Uniform colloidal zinc compounds of various morphologies. CHEMISTRY OF MATERIALS 1 (1): 78-82.
59.M. Singhal, V. Chhabra, P. Kang and D.O. Shah, (1997). Synthesis of ZnO nanoparticles for varistor application using Zn-substituted aerosol OT microemulsion. MATERIALS RESEARCH BULLETIN 32 (2): 239-247.
60.T. Ahmad, S. Vaidya, N. Sarkar, S. Ghosh and A.K. Ganguli, (2006). Zinc oxalate nanorods: a convenient precursor to uniform nanoparticles of ZnO. NANOTECHNOLOGY 17 (5): 1236-1240.
61.A. Martin, L. Gutierrez, F. Mattea and M.J. Cocero, (2007). Precipitation of mandelic acid with a supercritical antisolvent process: Experimental and theoretical analysis, optimization, and scaleup. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH 46 (5): 1552-1562.
62.E. Reverchon, G. Della Porta, D. Sannino and P. Ciambelli, (1999). Supercritical antisolvent precipitation of nanoparticles of a zinc oxide precursor. POWDER TECHNOLOGY 102 (2): 127-134.
63.P. Chattopadhyay and R.B. Gupta, (2001). Production of antibiotic nanoparticles using supercritical CO2 as antisolvent with enhanced mass transfer. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH 40 (16): 3530-3539.
64.M. Kitano, T. Okabe and M. Shiojiri, (1995). Growth of electrocrystallized ZnO particles by reaction of vacuum-deposited Zn films with distilled water. JOURNAL OF CRYSTAL GROWTH 152 (1-2): 73-78.
65.M. Kitano, T. Okabe and M. Shiojiri, (1996). Morphology and growth mechanism of ZnO particles electro-crystallized on Zn in aqueous solution. JOURNAL OF CRYSTAL GROWTH 166 (1-4): 1116-1120.
66.S. Komarneni, M. Bruno and E. Mariani, (2000). Synthesis of ZnO with and without microwaves. MATERIALS RESEARCH BULLETIN 35 (11): 1843-1847.
67.Y. Masuda, N. Kinoshita, F. Sato and K. Koumoto, (2006). Site-selective deposition and morphology control of UV- and visible-light-emitting ZnO Crystals. CRYSTAL GROWTH & DESIGN 6 (1): 75-78.
68.J.M. Crowley, A.L.G Rees and J.A. Spink, (1951). The morphology of zinc oxide smoke particles. PROCEEDINGS OF THE PHYSICAL SOCIETY B, 64: 638-644.
69.M.N. Fuller, (1944). Twinning in zinc oxide. JOURNAL OF APPLIED PHYSICS 15 (2): 164-170.
70.R.A. Laudise and A.A. Ballman, (1960). Hydrothermal synthesis of zinc oxide and zinc sulfide. THE JOURNAL OF PHYSICAL CHEMISTRY 60(5): 688-691.
71.W.J. Li, E.W. Shi, W.Z. Zhong and Z.W. Yin, (1999). Growth mechanism and growth habit of oxide crystals. JOURNAL OF CRYSTAL GROWTH 203 (1-2): 186-196.
72.R.B. Kale and S.Y. Lu, (2007). Structural, morphological, and optical properties of double-ended needle-like ultra-long ZnO micro/nanorods. JOURNAL OF PHYSICS-CONDENSED MATTER 19 (9): Art. No. 096209.
73.B.G. Wang, E.W. Shi and W.Z. Zhong, (1998). Twinning morphologies and mechanisms of ZnO crystallites under hydrothermal conditions. CRYSTAL RESEARCH AND TECHNOLOGY 33 (6): 937-941.
74.H. Zhang, D.R. Yang, D.S. Li, X.Y. Ma, S.Z. Li and D.L. Que, (2005). Controllable growth of ZnO microcrystals by a capping-molecule-assisted hydrothermal process. CRYSTAL GROWTH & DESIGN 5 (2): 547-550.
75.N. Wang, H. Lin, J.B. Li, L.Z. Zhang, X. Li, J. Wu and C.F. Lin, (2007). Strong orange luminescence from a novel hexagonal ZnO nanosheet film grown on aluminum substrate by a simple wet-chemical approach. JOURNAL OF THE AMERICAN CERAMIC SOCIETY 90 (2): 635-637.
76.A. Umar and Y.B. Hahn, (2006). ZnO nanosheet networks and hexagonal nanodiscs grown on silicon substrate: growth mechanism and structural and optical properties. NANOTECHNOLOGY 17 (9): 2174-2180.
77.J.Y. Lao, J.Y. Huang, D.Z. Wang, Z.F. Ren, D. Steeves, B. Kimball and W. Porter, (2004). ZnO nanowalls. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING 78 (4): 539-542.
78.R.A. McBride, J.M. Kelly and D.E. McCormack, (2003). Growth of well-defined ZnO microparticles by hydroxide ion hydrolysis of zinc salts. JOURNAL OF MATERIALS CHEMISTRY 13 (5): 1196-1201.
79.A.P.A. Oliveira, J.F. Hochepied, F. Grillon and M.H. Berger, (2003). Controlled precipitation of zinc oxide particles at room temperature. CHEMISTRY OF MATERIALS 15 (16): 3202-3207.
80.L. Khomenkova, P. Fernandez and J. Piqueras, (2007). ZnO nanostructured microspheres and elongated structures grown by thermal treatment of ZnS powder. CRYSTAL GROWTH & DESIGN 7 (4): 836-839.
81.Y.H. Ni, X.W. Wei, X. Ma and J.M. Hong, (2005). CTAB assisted one-pot hydrothermal synthesis of columnar hexagonal-shaped ZnO crystals. JOURNAL OF CRYSTAL GROWTH 283 (1-2): 48-56.