簡易檢索 / 詳目顯示

研究生: 蔡依庭
論文名稱: 採用放射傳輸流體模型模擬二維電漿顯示器以及發光效率的分析與研究
Simulation of 2-D radiation transport fluid model in PDP to study the efficiency of luminance
指導教授: 柳克強
陳金順
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 100
中文關鍵詞: 電漿顯示器
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電漿顯示器中,共振放射阱(resonance radiation trapping)是重要的物理現象之ㄧ。模擬採用流體模型並包含一個自洽(self-consistent)二維的放射傳輸公式來描述電漿顯示器槽中的共振放射效應。與傳統的等效阱(conventional trapping factor approach)假設比較,共振放射阱的優點是能較精確的描述共振激發態粒子在空間中的分布,而與蒙地卡羅模型比較,優點則是電腦計算時間短。其中還計算了到達螢光粉層上的共振及非共振紫外光光子通量,和到達上板玻璃的可見光光子通量。進而用計算結果得到最後的電漿顯示器可見光效率,最後使用實驗室的緩斜驅動波形來提高模擬的可見光發光效率。新的模型可以修正氙氣共振激發態 Xe*(3P1) 的空間分佈,進而修正可見光效率,配合緩斜驅動波形,可見光發光效率比傳統波形提升了47 %,而配合緩斜驅動波形在定址電極加上輔助電壓,可見光發光效率比傳統波形提升了78.8 %。


    In plasma display panels(PDPs), the resonance radiation trapping is one of the important processes. A self-consistent two-dimensional radiation transport model is coupled with a fluid simulation to represent the resonance radiation trapping effect in a plasma display panel cell. Compared with the conventional trapping factor approach, this model has an advantage in describing the spatial distribution with time of the radiative excited-state density. Compared with a Monte Carlo model, it also takes advantage of its fast computation to couple the radiation transport self-consistently with the time-dependent fluid model. The visible photon fluxes reaching the output window from the phosphor layers as well as the total UV photon fluxes arriving at the phosphor layer from the plasma region are calculated for resonant and nonresonant excited species. From these calculations. The visible light efficiency in PDP is obtained. Finally, the waveforms with the ramp-typed sustain voltage and the auxiliary address pulse is proposed to improve the visible light efficiency. Considering the RT model instead of TFA model, we found that the number of the Xe*(3P1) density is modified, and the visible light efficiency is modified further. By increase the rise-time of sustain pulse, the visible light efficiency can go up to 47% higher than the conventional waveform. Moreover, add auxiliary pulses on address electrode incorporate with the long rise-time sustain waveform; the luminous efficiency can be further increased up to 78.8% higher than the conventional waveform.

    Abstract (Chinese & English)…………………………………I & II Acknowledge (Chinese)…………………………………………...III 1.Introduction............................................1 1.1 Recent development of PDP……………………………..2 1.2 Recent development of radiation transport model in PDP….4 2. AC-PDPs technology…………............………….……….17 2.1 The structure of the AC PDPs……………………………17 2.2 The operation principles of the AC-PDPs……………..19 2.3 Physical model……………………………………………21 2.4 Numerical model……………………………………………28 2.4.1 Finite difference method……………………………..29 2.4.2 Spatial discretization of the continuity equation and the energy balance equation…….29 2.4.3 Spatial discretization of the Poisson’s equation……..32 2.4.4 The structure of simulation program……………...33 3. Resonance radiation transport in PDP…………………….35 3.1 Introduction of the Resonance radiation phenomenon...35 3.2 Radiation transport model (RT model)………………...37 3.3 Derivation of radiation transport matrix…………….40 3.3.1 Derive the trapping factor……………………………43 3.4 Visible light efficiency……………………………………44 3.4.1 Calculation of radiation flux for 147-nm……….44 3.4.2 Calculation of radiation flux for 150 and 173-nm…………...46 3.4.3 Calculation of flux for visible light and visible light generation efficiency……………………………………..47 4. RT model results and discussion…………………………...49 4.1 simulation of the radiation transport model………...49 4.2 The physical phenomenon of PDP during discharge period……..50 5. Simulation results with ramp-typed sustain voltage and auxiliary pulses on address electrode…………………………61 5.1 The visible light efficiency…………………………….63 5.2 simulation of RT model by combining an auxiliary pulse on address electrode with the ramp-type sustain pulse in sustain period…………………………………………………..66 5.2.1 The rise time of sustain pulse……………………..66 5.2.2 The auxiliary pulses on address with ramp-typed sustain Pulse……………………………….75 Reference ………………………………………………………………98

    Reference
    [1] H. G. Slottow, IEEE Trans. Electron Devices ED-23 760 (1976).
    [2] E. Lawrence. Tannas Jr, (New York: van Nostrand Reinhold), p 338 (1985).
    [3] J. P. Michel, Display Engineering ed D Bosman, p 185 (1989).
    [4] G. E. Holz, SID, 72 36 (1972).
    [5] H. Murakami and R. Toyonaga, IEEE Trans. Electron
    Devices 29 988 (1982).
    [6] T. Yamamoto, T. Kuriyama, M. Seki, T. Katoh, H. Murakami,
    K. Shimada and H. Ishiga, SID, 93 165 (1993).
    [7] O. Sahni, C. Lanza, and K. Werner, J. Appl. Phys. 49, 2365 (1978).
    [8] R. Veerasingam, R. Campbell, and R. T. McGrath, IEEE Trans. Plasma Sci. 23, 688 (1995).
    [9] R. Campbell, R. Veerasingam, and R. T. McGrath, IEEE Trans. Plasma Sci. 23, 698 (1995).
    [10] C. Punset, J. P. Boeuf, and L. C. Pitchford, J. Appl. Phys. 83, 1984 (1998).
    [11] E. A. Milne, J. London Math. Soc. 1, 40 (1926).
    [12] T. Holstein, Phys. Rev. 72, 1213 (1947); 83, 1159 (1951).
    [13] L. M. Biberman, Zh. Eksp. Teor. Fiz. 17, 416 (1947).
    [14] A. F. Molisch, B. P. Oehry, W. Schupita, and G. Magerl, J. Quant. Spectrosc. Radiat. Transf. 48, 377 (1992); 49, 361 (1993).
    [15] A. F. Molisch, B. P. Oehry, W. Schupita, and G. Magerl, Comput. Phys. Commun. 74, 81 (1993); 77, 255 (1993).
    [16] P. Wiorkowski, Opt. Commun. 53, 217 (1985).
    [17] J. E. Lawler, G. J. Parker, and W. N. G. Hitchon, J. Quant. Spectrosc. Radiat. Transf. 49, 627 (1993).
    [18] G. J. M. Hagelaar, M. H. Klein and R. J. M. Snijkers. J. Appl. Phys. 88, 5538 (2000).
    [19] M. J. Kushner, J. Appl. Phys. 87, 2700 (2000).
    [20] J.C.Ahn, S. B.kim, el, J. Appl. Phys. 41, 860 (2002).
    [21] J. P. Boeuf, J. Appl. Phys. 36 R53 (2003).
    [22] T. Nakamura, K. Iseki, Y. Sano and K. Nunomura, SID, 95 807 (1995).
    [23] C. Punset, S. Cany and J. P. Boeuf, J. Appl. Phys. 86 124 (1999).
    [24] J. Meunier, P. Belenguer, and J. P. Boeuf, J. Appl. Phys. 78, 731 (1995).
    [25] C. Punset, J. P. Boeuf and L. C. Pitchford, J. Appl. Phys. 83,1884 (1998).
    [26] J. P. Boeuf, C. Punset and R. Ganter, Asia Display’98, 209 (1998).
    [27] S. Rauf and M. J. Kushner, J. Appl. Phys. 85, 3460 (1999).
    [28] S. Rauf and M. J. Kushner, J. Appl. Phys. 85, 3470 (1999).
    [29] H. J. Lee, H. C. Kim, S. S. Yang, and J. K Lee, Physics Plasmas, 9, No. 6, (2002).
    [30] C. Punset, S. Cany and J. P. Boeuf, J. Appl. Phys. (1999).
    [31] H. W. Ellis, R. Y. Pai, E. W. McDaniel, E. A. Mason, and L. A. Viehland, AtomicData and Nuclear Data Tables 17 (3), 177-210 (1976).
    [32] BOLSIG, CPA Toulouse & Kinema Software (1996).
    [33] Gerardus Johannes Maria Hagelaar, to be published Technische Universiteit Eindhoven (2000).
    [34] D. L. Scharfetter and H. K. Gummel, IEEE Trans. ED 16, 64 (1969).
    [35] P. L. G. Ventzek, T. J. Sommerer, R. J. Hoekstra, and M. J. Kushner, Appl. Phys. Lett. 63, 605 (1993).
    [36] G.Veronis, U. S. Inan, J. Appl. Phys. 92, 4897 (2002).
    [37] 國立清華大學工程與系統科學所碩士論文,鄭凱儒 (2002).
    [38] 國立清華大學工程與系統科學所碩士論文,陳龍志 (2003).
    [39] 國立清華大學工程與系統科學所碩士論文,江弘棋 (2004).
    [40] H. C. Kim, S. S. Yang, and J. K Lee, J. Appl. Phys. 93, 9516 (2003).
    [41] S.E. LEE et al., J. Appl. Phys. 44, 8646 (2005)
    [42] S. S. Yang, H. C. Kim, S. W. Ko, and J. K. Lee, IEEE Trans. Plasma Sci. , 31 (2003)
    [43] S. H. Son, Y. S. Park, S. C. Bae, and S. Y. Choi, Appl. Phys. Lett. 80, 1719 (2002).
    [44] M. H. Nam, S. H. Son, Y. M. Kim, and S. Y. Choi, J. Appl. Phys. 96, 993 (2004).
    [45] 國立清華大學工程與系統科學所碩士論文,林明緯 (2004).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE