研究生: |
蔡卓諺 Tsai, Cho-Yen |
---|---|
論文名稱: |
有機金屬化學氣相沉積法成長之氮化銦薄膜的載子動力學 Carrier Dynamics of InN Films Made by Metal Organic Chemical Vapor Deposition |
指導教授: |
潘犀靈
Pan, Ci-Ling |
口試委員: |
楊承山
Yang, Chan-Shan 施宙聰 Shy, Jow-Tsong 吳小華 Wu, Hsiao-Hua |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 47 |
中文關鍵詞: | 光激發-兆赫坡探測 、氮化銦 、有機金屬化學氣相沉積 、載子動力學 |
外文關鍵詞: | optical-pump terahertz-probe, Indium nitride, Metal organic chemical vapor deposition, carrier dynamics |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氮化銦(InN)能隙為0.65 eV,在近幾年是具有潛力的三族氮化物半導體之一,擁有優越的電子傳輸特性。由於在三族氮化物中,有最低的有效質量和最高的電子遷移率,因此具有發展為高頻的光電及電子元件的潛力。
在本論文中,我們探討了利用有機金屬化學氣相沉積法(MOCVD)成長之氮化銦薄膜的載子動力學。藉由光激發-兆赫波探測技術,我們可以量到兆赫波的穿透率變化,然後用雙指數函數分析實驗曲線,我們發現樣品快速弛豫時間為13皮秒左右,推測主要可能是跟樣品表面陷阱的載子捕捉有關。慢速弛豫時間對應不同厚度分別為111、182和870皮秒,與分子束磊晶成長(MBE)之氮化銦薄膜相較,我們發現快速弛豫過程為MOCVD成長之InN載子動能弛豫的主要貢獻,而非慢速弛豫,這與MBE成長之薄膜相反。為了瞭解缺陷相關載子再結合的機制,我們也做了不同光激發強度的量測,並且透過X射線繞射儀的搖擺曲線量測,來解釋實驗結果。
經由光激發-兆赫波探測量測,我們可以更加了解InN的載子動力學。並且從分析結果我們可以得到氮化銦的弛豫時間和主要貢獻為快速弛豫過程。
Indium nitride (InN) is a group-Ⅲ nitride semiconductor with narrow direct band gap (0.65 eV), and superior electronic transport properties. With the lowest effective mass and highest mobility among other group-Ⅲ nitride, InN has potential to be used in high frequency optoelectronic devices.
In this thesis, we investigated carrier dynamics of indium nitride films grown by metal organic chemical vapor deposition. By using optical-pump terahertz-probe technique, we found that the fast relaxation time of InN thin films (200, 300, 500 nm in thickness) might be due to photocarrier capture by the surface trapping events, and the value is about 13 ps. Then we compare the experimental results for different thickness and different fabrication of previous work grown by molecular beam epitaxy. However, slow relaxation time is about few hundred ps. In order to know the mechanism of defect-related recombination process, we also do the experiment of pump fluence dependence for indium nitride films. Then using the rocking curve measurement by X-Ray Diffractometer to explain the experimental results.
Through the optical-pump terahertz-probe measurement, we can well explain the physical phenomenon of fast relaxation time and slow relaxation time for indium nitride films. In addition, from the fitting results, we can know that the value of relaxation time and fast relaxation process is the dominant for our samples.
[1] Y.-S. Lee, Principles of terahertz science and technology vol. 170: Springer Science & Business Media, 2009.
[2] G. Mourou, C. V. Stancampiano, and D. Blumenthal, "Picosecond microwave pulse generation," Applied Physics Letters, vol. 38, pp. 470-472, 1981.
[3] C. Fattinger and D. Grischkowsky, "Point source terahertz optics," Applied Physics Letters, vol. 53, pp. 1480-1482, 1988.
[4] N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, "High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics," Journal of applied physics, vol. 84, pp. 654-656, 1998.
[5] X. C. Zhang, B. Hu, J. Darrow, and D. Auston, "Generation of femtosecond electromagnetic pulses from semiconductor surfaces," Applied Physics Letters, vol. 56, pp. 1011-1013, 1990.
[6] R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, et al., "Terahertz semiconductor-heterostructure laser," Nature, vol. 417, p. 156, 2002.
[7] Q. Wu and X. C. Zhang, "Free‐space electro‐optic sampling of terahertz beams," Applied Physics Letters, vol. 67, pp. 3523-3525, 1995.
[8] B. B. Hu and M. C. Nuss, "Imaging with terahertz waves," Optics letters, vol. 20, pp. 1716-1718, 1995.
[9] M. Brucherseifer, M. Nagel, P. Haring Bolivar, H. Kurz, A. Bosserhoff, and R. Büttner, "Label-free probing of the binding state of DNA by time-domain terahertz sensing," Applied Physics Letters, vol. 77, pp. 4049-4051, 2000.
[10] D. M. Mittleman, S. Hunsche, L. Boivin, and M. C. Nuss, "T-ray tomography," in Ultrafast Electronics and Optoelectronics, 1997, p. UF5.
[11] P. H. Siegel, "Terahertz technology in biology and medicine," IEEE transactions on microwave theory and techniques, vol. 52, pp. 2438-2447, 2004.
[12] M. C. Kemp, P. Taday, B. E. Cole, J. Cluff, A. J. Fitzgerald, and W. R. Tribe, "Security applications of terahertz technology," in Terahertz for Military and Security Applications, 2003, pp. 44-53.
[13] D. Grischkowsky, S. Keiding, M. Van Exter, and C. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," JOSA B, vol. 7, pp. 2006-2015, 1990.
[14] C.-S. Yang, C.-H. Chang, M.-H. Lin, P. Yu, O. Wada, and C.-L. Pan, "THz conductivities of indium-tin-oxide nanowhiskers as a graded-refractive-index structure," Optics Express, vol. 20, pp. A441-A451, 2012.
[15] B. N. Flanders, D. C. Arnett, and N. F. Scherer, "Optical pump-terahertz probe spectroscopy utilizing a cavity-dumped oscillator-driven terahertz spectrometer," IEEE Journal of selected topics in quantum electronics, vol. 4, pp. 353-359, 1998.
[16] P. A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, et al., "Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene," Nano letters, vol. 8, pp. 4248-4251, 2008.
[17] H. Ahn, C.-H. Chuang, Y.-P. Ku, and C.-L. Pan, "Free carrier dynamics of InN nanorods investigated by time-resolved terahertz spectroscopy," Journal of applied physics, vol. 105, p. 023707, 2009.
[18] S. Strite and H. Morkoç, "GaN, AlN, and InN: a review," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 10, pp. 1237-1266, 1992.
[19] V. Chin, T. Tansley, and T. Osotchan, "Electron mobilities in gallium, indium, and aluminum nitrides," Journal of Applied Physics, vol. 75, pp. 7365-7372, 1994.
[20] S. W. Kaun, M. H. Wong, U. K. Mishra, and J. S. Speck, "Molecular beam epitaxy for high-performance Ga-face GaN electron devices," Semiconductor Science and Technology, vol. 28, p. 074001, 2013.
[21] A. Rice, Y. Jin, X. Ma, X. C. Zhang, D. Bliss, J. Larkin, et al., "Terahertz optical rectification from< 110> zinc‐blende crystals," Applied physics letters, vol. 64, pp. 1324-1326, 1994.
[22] K. Liu, J. Xu, T. Yuan, and X.-C. Zhang, "Terahertz radiation from InAs induced by carrier diffusion and drift," Physical Review B, vol. 73, p. 155330, 2006.
[23] J. Lloyd-Hughes, S. Merchant, L. Fu, H. Tan, C. Jagadish, E. Castro-Camus, et al., "Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs," Applied physics letters, vol. 89, p. 232102, 2006.
[24] C. Hu, Modern semiconductor devices for integrated circuits vol. 1: Prentice Hall Upper Saddle River, NJ, 2010.
[25] Wikipedia, "Chemical compound of Zinc telluride ".
[26] S. Svitasheva and A. Gilinsky, "Influence of doping level on shift of the absorption edge of gallium nitride films (Burstein-Moss effect)," Applied Surface Science, vol. 281, pp. 109-112, 2013.
[27] A. Vossier, B. Hirsch, and J. M. Gordon, "Is Auger recombination the ultimate performance limiter in concentrator solar cells?," Applied Physics Letters, vol. 97, p. 193509, 2010.
[28] C. Rauch, Ö. Tuna, C. Giesen, M. Heuken, and F. Tuomisto, "Point defect evolution in low‐temperature MOCVD growth of InN," physica status solidi (a), vol. 209, pp. 87-90, 2012.
[29] V. Y. Davydov, V. Emtsev, I. Goncharuk, A. Smirnov, V. Petrikov, V. Mamutin, et al., "Experimental and theoretical studies of phonons in hexagonal InN," Applied physics letters, vol. 75, pp. 3297-3299, 1999.
[30] R. Prasankumar, A. Scopatz, D. Hilton, A. Taylor, R. Averitt, J. Zide, et al., "Carrier dynamics in self-assembled ErAs nanoislands embedded in GaAs measured by optical-pump terahertz-probe spectroscopy," Applied Physics Letters, vol. 86, p. 201107, 2005.
[31] K. Lui and F. Hegmann, "Ultrafast carrier relaxation in radiation-damaged silicon on sapphire studied by optical-pump–terahertz-probe experiments," Applied Physics Letters, vol. 78, pp. 3478-3480, 2001.
[32] H. Liu, J. Lu, H. F. Teoh, D. Li, Y. P. Feng, S. H. Tang, et al., "Defect Engineering in CdS x Se1–x Nanobelts: An Insight into Carrier Relaxation Dynamics via Optical Pump–Terahertz Probe Spectroscopy," The Journal of Physical Chemistry C, vol. 116, pp. 26036-26042, 2012.
[33] H. Ahn, Y.-P. Ku, Y.-C. Wang, C.-H. Chuang, S. Gwo, and C.-L. Pan, "Terahertz spectroscopic study of vertically aligned InN nanorods," Applied physics letters, vol. 91, p. 163105, 2007.
[34] F. Gao, G. Carr, C. Porter, D. Tanner, G. Williams, C. Hirschmugl, et al., "Quasiparticle damping and the coherence peak in YBa 2 Cu 3 O 7− δ," Physical Review B, vol. 54, p. 700, 1996.
[35] J. B. Baxter and C. A. Schmuttenmaer, "Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy," The Journal of Physical Chemistry B, vol. 110, pp. 25229-25239, 2006.