研究生: |
李承翰 Lee, Cheng-Han |
---|---|
論文名稱: |
軸頸式液靜壓線性滑軌在工具機上的應用 Application of hydrostatic linear guide on machine tool |
指導教授: |
林士傑
Lin, Shin-Chieh |
口試委員: | 宋震國 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 軸頸式液靜壓軸承 、多腔式 、線性滑軌 |
外文關鍵詞: | Hydrostatic journal bearing, muti-recess, linear guide |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在工具機的滑動件上,經常採用線性滑軌以降低滑動時的摩擦係數。而在精密工具機的滑動件上,則常採用液靜壓滑軌以更進一步降低摩擦以提升位置控制精度;並降低磨耗及提升系統阻尼及動態剛性。但液靜壓滑軌的構造較為複雜,參數眾多不易直觀的進行設計。而軸頸式液靜壓滑軌的設計相對簡潔;因而本研究將針對軸頸式液靜壓滑軌的設計進行相關研究。
本研究的目的為設計出符合業界需求的液靜壓線性滑軌。設計時主要藉由電腦模擬的方式來確認相關參數所產生的性能有達到要求,這些參數包含滑軌長度、軸承直徑、油膜厚度、供油壓力、油腔尺寸等等,對滑軌的性能影響包括變形量、傾斜角度、承載力、流量。並根據分析的結果找到最適當的參數組合,以做為軸頸式液靜壓線性滑軌的設計指標。
最後根據模擬結果選定適當參數設計軸頸式液靜壓線性滑軌、進行實驗與量測、探討模擬及實驗結果的差異。
Linear guide way is quite popular in machine tool design for its main advantage of low friction. For high precision machine tool, hydrostatic linear guide way is frequently adopted for its even lower friction and hence a higher precision control capability. Besides, the hydrostatic linear guide way provides the edge of low wear and higher damping/ dynamic stiffness. However, the design of hydrostatic linear guide way is relatively complex. The design of journal type hydrostatic guide way is relatively simple, therefore it is of interest to study the design of journal type hydrostatic guide way.
The purpose of this research is to reveal the procedures needed for the design of a journal type hydrostatic guide way to fulfill the need from industrial. The system parameters studied includes length and diameter of the shaft, film thickness, size of recess in the journal type guide way, supply pressure of bearing and et al. The performance of system studied includes deformation and tilting of the shaft, loading capacity, static stiffness and flow rate of the hydrostatic guide way are evaluated through simulations.
Based on the results, a test system is established to verify the simulation results. Series of experiments were conducted to verify the simulation results. Finally conclusions were made based on these results.
Bassani, R. and B. Piccigallo (1992). Hydrostatic Lubrication, Elsevier Science.
Bhushan, B. (2002). Introduction to Tribology, Wiley.
Davies, P. B. (1969). "A General Analysis of Multi-Recess Hydrostatic Journal Bearings." Mech. E. Lond. No. 43 Proc(184).
Ghosh, B. (1972). "An exact analysis of a hydrostatic journal bearing with a large circumferential sill." Wear 21(2): 367-375.
Ghosh, B. (1973). "Load and flow characteristics of a capillary-compensated hydrostatic journal bearing." Wear 23(3): 377-386.
Girard, L.-D. (1852). Hydraulique appliquée. Nouveau système de locomotion sur les chemins de fer, Paris : Bachelier.
Hamrock, B. J., S. R. Schmid and B. O. Jacobson (2004). Fundamentals of Fluid Film Lubrication, CRC Press.
Harnoy, A. (2002). Bearing Design in Machinery: Engineering Tribology and Lubrication, CRC Press.
Haruo, M. and Y. Hiroshi (1963). A Theoretical Investigation on Hydrostatic Bearing. JSME, The Japan Society of Mechanical Engineers: 354-363.
Hibbeler, R. C. (2008). Mechanics of material. Singapore, Pearson Education.
Loeb, A. M. and H. C. Rippel (2008). "Determination of Optimum Proportions for Hydrostatic Bearings." ASLE Transactions 1(2): 241-247.
Majumdar, B. C. (1969). "The numerical solution of hydrostatic oil journal bearings with several supply ports." Wear 14(6): 389-396.
O'Donoghue, J. P. and W. B. Rowe (1968). "Hydrostatic journal bearing (exact procedure)." Tribology 1(4): 230-236.
O'Donoghue, J. P., W. B. Rowe and C. J. Hooke (1969). "Design of hydrostatic bearings using an operating parameter." Wear 14(5): 355-362.
Raimondi, A. A. and J. Boyd (1954). An analysis of Orifice and Capillary Compensated Hydrostatic Journal Bearings. ASME-ASCE Lub. Baltimore USA
Rippel, H. C. (1963). "Design of Hydrostatic Bearings." Machine Design: 1-10.
Rowe, W. B. (2012). Hydrostatic, Aerostatic and Hybrid Bearing Design, Elsevier.
Rowe, W. B., J. P. O'Donoghue and A. Cameron (1970). "Optimization of externally pressurized bearings for minimum power and low temperature rise." Tribology 3(3): 153-157.
Rule, B. (1948). "Engineering Aspects of the 200-inch Hale Telescope." Publications of the Astronomical Society of the Pacific 60(355): 225.
Sharma, S. C., S. C. Jain and D. K. Bharuka (2002). "Influence of recess shape on the performance of a capillary compensated circular thrust pad hydrostatic bearing." Tribology International 35(6): 347-356.
Shaw, M. C. and E. F. Macks (1949). Analysis and Lubrication of Bearings. New York, McGraw-Hill.
Yoshimoto, S., T. Kume and T. Shitara (1998). "Axial load capacity of water-lubricated hydrostatic conical bearings with spiral grooves for high speed spindles: Comparison between rigid and complaint surface bearings." Tribology International 31(6): 331-338.
曾靖錡 (2014). 多腔軸頸式液靜壓線性滑軌之分析. 碩士, 國立清華大學