簡易檢索 / 詳目顯示

研究生: 陳柏宏
Chen, Po-Hung
論文名稱: 2,3,5,6-四氟-7,7’,8,8’-四氰二甲基對苯醌在 Ni/Cu(100)表面上之自旋介面性質與磁有序性研究
Enhanced Magnetic Ordering and Spinterface of F4-TCNQ on Ni/Cu(100) Surface
指導教授: 許瑤真
Hsu, Yao-Jane
王本誠
Wang, Pen-Cheng
口試委員: 許瑤真
Hsu, Yao-Jane
王本誠
Wang, Pen-Cheng
魏德新
Wei, Der-Hsin
林宏基
Lin, Hong-Ji
學位類別: 碩士
Master
系所名稱: 理學院 - 先進光源科技學位學程
Degree Program of Science and Technology of Synchrotron Light Source
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 96
中文關鍵詞: 有機自旋閥光電子發射顯微術磁光柯爾效應儀磁圓偏振二向性顯像式光電子顯微術
外文關鍵詞: organic spin valve, ultra-violet photoelectron spectroscopy, X-ray Magnetic Circular Dichroism, Photoemission electron microscopy, F4-TCNQ
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討在不同製備參數(Ni厚度)下,有機自旋閥底層結構中之有機半導體薄膜(2,3,5,6-Tetrafluoro-7,7’,8,8’-Tetracyanoquinodimethane,簡稱F4-TCNQ)蒸鍍於鐵磁性鎳(Nickel, Ni)薄膜的自旋介面特性。利用表面磁光科爾效應MOKE、圓偏振光二色性XMCD、顯像式光電子能譜顯微術PEEM等磁性量測工具來分析F4-TCNQ/Ni自旋介面的磁耦合現象、磁結構元素分析和磁區分佈,並且使用光電子能譜顯微術XPS觀察F4-TCNQ和Ni之間電荷轉移的類型、元素鍵結及薄膜成長機制,同時透過紫外光光電子能譜UPS得知功函數變化,進而得知此自旋介面的能帶接面情形。


    We investigated the magnetic properties and spin interface of tetrafluorotetracyanoquinodimethane (F4-TCNQ)-tailored nickel (Cu(100)/Ni) surface which display enhanced magnetic ordering at lower critical thickness of Ni film. Surface magnetic anisotropy performed by the magneto-optical Kerr effect (MOKE) displays magnetic hardening upon F4-TCNQ adsorption. The magnetic domains inspected by photoelectron-emission microscope (PEEM) measurements also exhibits improved magnetic ordering with larger domain sizes and less domain boundary. To elucidate the origin of enhanced magnetic ordering after molecular tailoring, surface-sensitive and element specific X-ray Magnetic Circular Dichroism (XMCD) were employed. The XMCD reveals the orbital and spin moment of in-plane Ni is significantly increased, while that keep almost unaltered at out-of-plane. Through the strong superexchange coupling at in-plane, the nonmagnetic F4-TCNQ is spin polarized. Our results suggest the enhanced magnetic ordering of such organic-ferromagnetic interface is an effective spin filtering for constructing high efficient organic spintronics.

    第一章 序論……………………………………………………………1 1.1 前言………………………………………………………………………1 第二章 理論背景與文獻回顧……….……………….…………...2 2.1 有機自旋閥………………………………………………….…………...2 2.1.1 磁阻效應(巨磁阻、穿隧磁阻)………………………………...2 2.1.2 有機自旋閥之發展……………………………………………..3 2.1.3 有機自旋閥之介面……………………..………………………4 2.2 磁性基礎理論…………..………………………..………………………5 2.2.1 鐵磁性材料……………………………..………………………5 2.2.2 自旋翻轉成因……………………..……………………………6 2.3 有機半導體簡介……………………..………………..…………………7 2.3.1 有機自旋電子學……………………………..…………………7 2.3.2 有機分子F4-TCNQ…………..………………..………………7 2.5 研究動機…………..………………..………………………………….…7 第三章 儀器設備與實驗原理…….………………………………15 3.1 同步輻射光源(Synchrotron Radiation)…………………………………15 3.2 光電子發射顯微術(Photoemission Spectroscopy)……………………...15 3.2.1 X光光電子發射能譜術(X-ray Photoelectron Spectroscopy).16 3.2.2 紫外光光電電子能譜 (Ultra-violet Photoelectron Spectroscopy)…………………………………………………………………16 3.3 磁光柯爾效應儀(Magneto-Optical Kerr Effect)……………………….17 3.4 磁圓偏振二向性(X-ray Magnetic Circular Dichroism)…………….18 3.5 顯像式光電子顯微術 (Photoemission electron microscopy)…… .……18 第四章 實驗方法與樣品量測……………………………………26 4.1 實驗方法…………………………………………………………………26 4.1.1 實驗樣品………………………………….……………………26 4.1.2 基板清潔………………………………….……………………26 4.1.3 樣品製備………………………………….……………………27 4.2 樣品量測…………………………………………...……………………27 4.2.1 XPS、UPS的量測……………………...…..…………………27 4.2.2 MOKE的量測…………………………...…..…………………28 4.2.3 XMCD的量測及數據處理……………...…..…………………28 4.2.4 PEEM的量測及數據處理……………...…..…………………30 第五章 實驗結果與討論……………...…..………………….……37 5.1 Ni/Cu(100)的自旋翻轉臨界厚度...…..…….……..………….…….37 5.2.1 各樣品其鐵磁層Ni厚度可靠性比較...…..…….……..…….…….47 5.2.2 鐵磁層Ni的磁結構(magnetic structure)分析…....………….…….47 5.2.3 F4-TCNQ各元素的磁性表徵分析.……..…………………...…….50 5.2.4 F4-TCNQ/ Ni的磁性模型……..………………………...…...…….51 5.3.1 XMCD數據比較 (dichroic ratio)……………………………….….61 5.3.2 F4-TCNQ吸附前後之Ni磁區影像比較………………………….61 5.3.3 元素N之磁影像…………………………………………………….63 5.4.1 Ni 2p3/2核層電子能譜…………………………………….……….69 5.4.2 F 1s核層電子能譜………………………………………….……….70 5.4.3 N 1s核層電子能譜………………………………...……….……….71 第六章 結論………………………………...……….………………...84 第七章 參考文獻………………………………...……….………….85 附錄………………………………………………………...……….……….92

    第一章
    [1] G. Binasch,P. Grünberg,F. Saurenbach, and W. Zinn,“Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange”, Physical Review B, 39, 4828, 1989.
    [2] M. N. Baibich,J. M. Broto,A. Fert,F. Nguyen Van Dau,F. Petroff,P. Etienne,G. Creuzet,A. Friederich, and J. Chazelas,“Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices”, Phys. Rev. Lett., 61, 1988.
    [3] S. A. Wolf,D. D. Awschalom,R. A. Buhrman,J. M. Daughton,S. von Molnar,M. L. Roukes,A. Y. Chtchelkanova, and D. M. Treger,“Spintronics: A spin-based electronics vision for the future”, Science, 294, 5546, 2001.
    [4] F. J. Jedema,A. T. Filip, and B. J. van Wees,“Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve”, Nature, 410, 6826, 2001.
    [5] W. J. M. Naber,S. Faez, and W. G. van der Wiel,“Organic spintronics”, J. Phys. D-Appl. Phys., 40, 12, 2007.
    第二章
    [6] 江文中、李尚凡,“2007諾貝爾物理獎-輕鬆看巨磁阻 ”, 物理雙月刊, 三十卷二期, 2008.
    [7] V. Dediu, M. Murgia, F. C. Matacotta, C. Taliani, and S. Barbanera, Solid State Commun. 122, 181 (2002)
    [8] Z. H. Xiong, Di Wu, Z. Valy Vardeny, and Jing Shi, Nature 427, 821 (2004)
    [9] S. Sanvito, Chem. Soc. Rev. 40, 3336-3355 (2011)
    [10] Martin Callsen PRL 111, 106805 (2013)
    [11] Fahlman, M et al.. Adv. Mater. 2010, 22, 1626–1630.
    第三章
    [12] http://www.nsrrc.org.tw/
    [13] Vickerman, J.C. “Surface Analysis-The Principal Techniques”, John Wiley and Sons (1997)
    [14] G. Ertl, J.Küppers, “Low Energy Electrons and Surface Chemistry”, VCH Verlagsgesellschaft mbH, D-6940 Weinheim (1985)
    [15] 李宗勳,國立成功大學物理研究所 (2003)
    [16] Journal of Magnetism and Magnetic Materials 200 (1999) 470 – 497
    [17] Surface Review and Letters, Vol. 9, No. 2(2002) 877-881
    [18] Hisao Ishii, Kiyoshi Sugiyama, Eisuke Ito, Kazuhiko Seki, Adv. Mater. 11, 605 (1999)
    第四章
    [19] C. T. Chen et al. PhysRevLett.75.152
    [20] O. Eriksson, B. Johansson, R. C. Albers, A. M. Boring, and M. S.S. Brooks, Phys. Rev. B 42, 2707 - 1990.
    第五章
    [21] B. Schulz and K. Baberschke, Phys. Rev. B 50, 13467 - 1994
    [22] B. Schulz, R. Schwarzwald, and K. Baberschke, Surf. Sci. 307–309, 1102- 1994
    [23] W. L. O’Brien and B. P. Tonner, Phys. Rev. B 49, 15370 - 1994
    [24] R. Jungblut, M. T. Johnson, J. aan de Stegge, A. Reinders, and F. J. A. den Broeder, J. Appl. Phys. 75, 6424-1994
    [25] W. L. O’Brien, T. Droubay, and B. P. Tonner, Phys. Rev. B 54, 9297-1996
    [26] Koch, N.; Duhm, S.; Rabe, J.; uuml; rgen, P.; Vollmer, A.Johnson, R. L. Optimized Hole Injection with Strong Electron Acceptors at Organic-Metal Interfaces. Phys. Rev. Lett. 2005, 95, 237601.
    [27] Braun, S.; Salaneck, W. R. Fermi Level Pinning at Interfaceswith Tetrafluorotetracyanoquinodimethane (F4-TCNQ): the Role of Integer Charge Transfer States. Chem. Phys. Lett. 2007, 438, 259 − 262.
    [28] W. Chen et al. / Progress in Surface Science 84 (2009) 279–321

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE