簡易檢索 / 詳目顯示

研究生: 陳姿廷
Chen, Tzu-Ting
論文名稱: A Cross-Layer Relay Selection Scheme for Cooperative Wireless Ad Hoc Networks
合作式無線隨意網路之跨層式中繼節點選擇法
指導教授: 王晉良
Wang, Chin-Liang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 49
中文關鍵詞: 合作式通訊中繼節點選擇跨層式設計
外文關鍵詞: Cooperative communication, Relay selection, Cross-layer design
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,在無線網路中合作式通訊引起了廣泛的討論和研究的興趣,它更被視為一種可增加通訊品質與可靠性的傳輸技術,合作式通訊藉由節點之間的合作來有效建立空間分集。然而考量到實際的通訊系統協定之運作,我們必須要謹慎的在其實體層(PHY)上層作整體化的協定設計(尤其是在媒體存取控制(MAC)層和網路層最為重要),使此技術的優點得以充分發揮與實現。
    在參考文獻中,有作者提出了一個針對合作式無線網路系統的跨層設計架構,此協定命名為CoopGeo,它由兩部分所組成,一個是結合媒體存取控制層及網路層的設計下選出最佳的轉遞點(forwarder),另一則是結合媒體存取控制層及實體層的設計下選出最合適的中繼點(relay)。而其中繼點選取範圍由於要避免掉盲點暗藏(hidden node)的問題,所以採取了雷諾三角形(Reuleaux triangle)的方法來縮小範圍,但也因此將遺漏掉許多可選取的中繼點。
    在此篇論文中,我們延續CoopGeo的架構,針對MAC-PHY跨層做設計,提出一個新的中繼點選取範圍,用於選擇最佳的中繼點。我們利用錯誤率的觀點分析可將此選取範圍用橢圓來表示,並保證所有在橢圓內的候選中繼點皆可提供比直接傳輸(direct transmission)更好的合作式通訊,之後再由這些候選中繼點中選出最佳的中繼點。透過新的中繼點選取範圍,將增加了合作式通訊的機會,然而在完成中繼點選取範圍後,隨之帶來了一個盲點暗藏(hidden node)的問題,我們在此利用媒體存取控制層的封包交換控制來解決。透過電腦模擬分析結果可看出,我們所提出自新中繼點選取範圍中來選取中繼點的傳輸錯誤率表現優於直接傳輸和先前的CoopGeo 協定,而隨後也比較了不同調變方式針對所提出的方法的錯誤率來作比較。


    Cooperative communication for wireless networks has gained much attention because the spatial diversity can be achieved by nodes collaboration. However, to take full benefits of cooperative communications in practical networks, higher layer protocols, especially the medium access control (MAC) and network (NWK) layers should be designed carefully.
    A framework of cross-layer design for cooperative wireless networks, named CoopGeo, has been proposed in the literature. It is mainly composed of the forwarder and relay selections; the former is a joint MAC-NWK layer design and the latter is a joint MAC-PHY layer design. Nevertheless, to avoid the hidden node problem during the relay selection process, the choice of the relaying area in CoopGeo is based on the Reuleaux triangle graph, naturally leading to a loss of potential relays that are within the source’s transmission range. In this thesis, following the framework of CoopGeo, we propose a new MAC-PHY cross-layer design for relay selection, where the relaying area is modeled as an ellipse graph through a QoS-guaranteed coverage analysis. Specifically, every relay within the ellipse-shaped relaying area can provide a better cooperative link than the direct transmission. The use of the new relaying area, yet, leads to a hidden node problem and hence an increase of the collision probability during the relay selection contention process. We also propose a handshaking mechanism to solve this problem. Simulation results show that, in comparison with CoopGeo, the proposed relay selection scheme significantly improves the symbol error rate (SER) performance over fading channels. Moreover, our scheme also provides better performance in terms of the transmission error probability that is defined to assess the joint error behavior due to collision and channel fading.

    Abstract i Contents iii List of Figures v Chapter 1 Introduction 1 Chapter 2 Basics of Cooperative Communication 5 2.1 Basic Concept 5 2.2 System Model 6 2.2.1 A Single-Relay Cooperation Model 6 2.2.2 A Multihop Cooperation Model 8 Chapter 3 A Cross-Layer Design for Cooperative Wireless Networks 12 3.1 Impact of Cross-Layer Design on Cooperative Networks 12 3.2 CoopGeo: A Framework of Cross-Layer Design 13 3.2.1 Forwarder Selection 13 3.2.2 Relay Selection 16 3.2.3 Protocol Descriptions 19 Chapter 4 Proposed Cross-Layer Relay Selection Scheme 24 4.1 Motivation 24 4.2 MAC-PHY Cross-Layer Design for Relay Selection 25 4.2.1 Definitions and Problem Statement 25 4.2.2 Proposed Relaying Area Based on Coverage Analysis 27 4.2.3 Mathematical Expression for Relaying Area 29 4.2.4 Avoidance of Hidden Node Problem 31 4.3 Proposed Protocol in Detail 33 Chapter 5 Performance Evaluations 40 Chapter 6 Conclusions 47 Bibliography 48

    [1] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity in wireless networks: efficient protocols and outage behavior,” IEEE Trans. Inform. Theory, vol. 50, pp. 3062-3080, Dec. 2004.
    [2] A. K. Sadek, W. Su, and K. J. R. Liu, “Multinode cooperative communications in wireless networks,” IEEE Trans. Signal Processing, vol. 55, pp. 341-355, Jan. 2007.
    [3] P. Herhold, E. Zimmermann, and G. Fettweis, “A simple cooperative extension to wireless relaying,” in Proc. Int. Zurich Seminar Commun., pp. 36-39, Feb. 2004.
    [4] C.-L. Wang and S.-J. Syue, “A geographic-based approach to relay selection in wireless ad hoc relay networks,” in Proc. 69th IEEE Vehicular Technology Conf. (VTC 2009), Barcelona, Spain, April 2009, pp. 1-5.
    [5] P. Liu, Z. Tao, and S. Panwar, “A cooperative mac protocol for wireless local area networks,” in Proc. IEEE Int. Conf. Commun. (ICC), Seoul, Korea, May 2005, vol. 5, pp. 2962-2968.
    [6] H.-S. Shan, W. Wang, W. Zhuang, and Z. Wang, “Cross-layer cooperative triple Busy tone multiple access for wireless networks,” in Proc. 2008 IEEE Global Telecommun. Conf. (GLOBECOM’08), New Orleans, Louisiana, Nov. 2008, pp. 1-5.
    [7] T. Aguilar, M. C. Ghedira, S.-J. Syue, V. Gauthier, H. Afifi, and C.-L. Wang, “A cross-layer design based on geographic information for cooperative wireless networks,” in Proc. 70th IEEE Vehicular Technology Conf. (VTC 2010), Taipei, Taiwan, May 2010, pp. 1-5.

    [8] J. A. Sanchez, R. Marin-Perez, and P. M. Ruiz, “BOSS: Beacon-less on demand strategy for geographic routing in wireless sensor networks,” in Proc. 4th IEEE Mobile Ad-hoc and Sensor Systems Conf. (MASS 2007), pp. 1-10.
    [9] M. Zorzi and R. R. Rao, “Geographic random forwarding (GeRaF) for ad hoc and sensor networks: multihop performance,” IEEE Trans. Mobile Comput., vol. 2, pp. 337-348, Oct.-Dec. 2003.
    [10] W. Su, A. K. Sadek, and K. J. Ray Liu, “Cooperative communication protocols in wireless networks: Performance analysis and optimum power allocation,” Wirel. Pers. Commun., vol. 44, no. 2, pp. 181-217, 2008.
    [11] D. G. Brennan, “Linear diversity combining techniques,” in Proc. IEEE, vol. 91, pp. 331-356, Feb. 2003.
    [12] H. Kalosha, A. Nayak, S. Ruhrup, and I. Stojmenovic, “Select-and-protest-based beaconless georouting with guaranteed delivery in wireless sensor networks,” in Proc. 27th IEEE International Conference on Computer Communications (INFOCOM 2008), Phoenix, AZ, USA, April 2008, pp. 346-350.
    [13] W. Su, A. S. Ibrahim, A. K. Sadek, and K. J. R. Liu, “Cooperative communications with relay selection: When to cooperate and whom to cooperate with?” IEEE Trans. Wireless Commun., vol. 7, no. 7, pp. 2814-2827, July 2008.
    [14] H. Fubler, J. Widmer, M. Kasemann, M. Mauve, and H. Hartenstein, “Contention-based forwarding for mobile ad hoc networks,” Ad Hoc Networks, vol. 1, pp. 351-369, Nov 2003.
    [15] M. K. Simon, M. Alouini, “A unified approach to the performance analysis of digital communication over generalized fading channels,” in Proc. 1998 IEEE, vol. 86, no. 9, pp. 1860-1877, Sept. 1998

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE