簡易檢索 / 詳目顯示

研究生: 林宗達
Lin, Tsung-Da
論文名稱: 高效能自對準反轉通道砷化銦鎵金氧半場效電晶體
High Performance Self-aligned Inversion-channel InGaAs MOSFETs
指導教授: 洪銘輝
Hong, Minghwei
郭瑞年
Kwo, Raynien
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 英文
論文頁數: 111
中文關鍵詞: 高介電常數氧化物氧化鎵氧化釓砷化銦鎵金氧半場效電晶體分子束磊晶
外文關鍵詞: high-k dielectrics, Ga2O3, Gd2O3, InGaAs, MOSFETs, Molecular Beam Epitaxy
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • High κ gate dielectrics on channel materials with high carrier mobility are urgently demanded for achieving high performance and low power complementary metal-oxide-semiconductor (CMOS) technologies beyond the 15 nm node. This work is carried out not only to realize high performance III-V MOSFETs but also to project the ultimate performance of III-V MOSFETs. Ultra-high-vacuum (UHV) deposited Al2O3/Ga2O3(Gd2O3) [GGO] on InGaAs have exhibited low interfacial densities of states of ~ 10^11 eV^(-1)•cm^(-2), small capacitance equivalent thickness of ~1 nm, thermal stability at high temperatures higher than 850 – 900℃, and controllable metal-work-function dependent flat-band voltages.
    In this dissertation, high performance self-aligned inversion-channel InGaAs MOS field-effect-transistors (MOSFETs) have been demonstrated using UHV-deposited Al2O3/GGO dual-layer dielectrics and sputtered TiN metal gates. The 1μm-gate-length Al2O3/GGO/In0.53Ga0.47As MOSFETs have demonstrated record-high maximum drain current of 1.05 mA/μm, peak transconductance of 714 μS/μm, and a high mobility of 1300 cm^2/V•s. In addition, the same transistors exhibits excellent embedded radio-frequency characteristics, including a fT of 17.9 GHz and a fmax of 11.2 GHz. Moreover, In0.75Ga0.25As MOSFETs, also with a gate length of 1 μm, have achieved a maximum drain current of 1.23 mA/μm, a peak transconductance of 464 μS/μm and a peak field-effect electron mobility of 1600 cm^2/V•s. The Al2O3/GGO/InGaAs MOSFETs have set records, not only for III-V MOSFETs but also for all enhancement-mode MOSFETs with similar gate-lengths, regardless of channel materials and device configurations. They serve the key in realizing ultimately scaled planar device with high performance.


    Abstract iii List of Tables vii List of Figures viii Chapter 1 Introduction 1 1.1 Si technology and Moore’s Law 1 1.2 High-κ/III-V MOS devices 5 1.2.1 InGaAs MOS capacitors 6 1.2.2 Enhancement-mode InGaAs MOSFETs 10 1.3 Organization of the dissertation 12 Chapter 2 Experimental Procedure 14 2.1 Growth of high-κ/InGaAs 14 2.2 Fabrication of InGaAs MOSCAPs and MOSFETs 17 2.3 Measurement of InGaAs MOS devices 23 Chapter 3 Characteristics of GGO/InGaAs 24 3.1 The hydrophilic characteristic of rare-earth oxides 24 3.2 GGO/In0.2Ga0.8As MOSFETs with and without Si3N4 cap layer 30 3.2.1 Inversion-channel Si3N4/GGO/In0.18Ga0.82As MOSFETs 30 3.2.2 Inversion-channel GGO/In0.2Ga0.8As MOSFETs 35 3.3 GGO/InGaAs MOSCAPs using in-situ UHV-deposited Al2O3 cap 37 3.3.1 In-situ Al2O3 for protecting GGO and GGO/InGaAs interface 38 3.3.2 GGO thickness scalability, low Dit, low leakage currents, and high-temperature thermal stability 39 3.3.3 Controllable metal-work-function dependent flatband voltages 41 3.4 Summary 44 Chapter 4 Al2O3/GGO/In0.53Ga0.47As MOSFETs (I): dc characteristics 46 4.1 Device Cross-section and TEM micrograph 47 4.2 I-V characteristics, transconductance, and mobility 49 4.3 Contact resistance 52 4.4 Scaling of MOSFETs 54 4.4.1 Vertical (oxide thickness) scaling 54 4.4.2 Lateral (gate length) scaling 56 4.5 Summary 58 Chapter 5 Al2O3/GGO/In0.53Ga0.47As MOSFETs (II): rf characteristics 59 5.1 Cut-off frequency and maximum frequency of oscillation 60 5.2 Gate voltage dependence of the high frequency responses 63 5.3 Comparison 63 5.4 Summary 65 Chapter 6 Al2O3/GGO/In0.75Ga0.25As MOSFETs 66 6.1 Device cross-section 67 6.2 Effects of channel doping concentration 68 6.3 An In0.75Ga0.25As MOSFET setting a new record of maximum drain current for III-V MOSFETs 73 6.4 Summary 80 Chapter 7 Comparisons among E-mode InGaAs MOSFETs 81 7.1 Structures 81 7.2 Performance benchmarking 82 Chapter 8 Conclusion and Future Work 89 References 93 Appendix—Publication List 105

    [1] J. Bardeen and W. H. Brattain, "The transistor, a semi-conductor triode," Physical Review, vol. 74 pp. 230-231, 1948.
    [2] D. Kahng, "Electric field controlled semiconductor device," U. S. Patent No. 3,102,230, August 27, 1963.
    [3] C. J. Frosch and L. Derick, "Surface Protection and Selective Masking during Diffusion in Silicon," J. Electrochem. Soc., vol. 104, pp. 547-552, 1957.
    [4] G. E. Moore, "Cramming more components onto integrated circuits," Electronics, vol. 38, pp. 114-117, 1965.
    [5] Intel. Transcript for "Moore's Law: An Intel Perspective". Available: ftp://download.intel.com/museum/Moores_Law/Video-Transcripts/Excepts_A_Conversation_with_Gordon_Moore.pdf
    [6] G. E. Moore, "Progress in digital integrated electronics," in Tech. Dig. - Int. Electron Devices Meet., 1975, pp. 11-13.
    [7] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc, "Design of ion-implanted MOSFET's with very small physical dimensions," IEEE J. Solid-State Circuit vol. 9, pp. 256-268, 1974.
    [8] International Technology Roadmap for Semiconductors (2009 ed.). Available: http://www.itrs.net/
    [9] L. Zuckerman, "I.B.M. to make smaller and faster chips - Second breakthrough in a week has wide uses," in The New York Times, Sep. 22, 1997.
    [10] P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, and H. Deligianni, "Damascene copper electroplating for chip interconnections," IBM J. Res. Dev. , vol. 42, pp. 567-574, 1998.
    [11] R. D. Goldblatt, B. Agarwala, M. B. Anand, E. P. Barth, G. A. Biery, Z. G. Chen, S. Cohen, J. B. Connolly, A. Cowley, T. Dalton, et al., "A high performance 0.13 μm copper BEOL technology with low-k dielectric," in Proc. IEEE Int. Interconnect. Tech. Conf., 2000, pp. 261-263.
    [12] K. Maex, M. R. Baklanov, D. Shamiryan, F. Iacopi, S. H. Brongersma, and Z. S. Yanovitskaya, "Low dielectric constant materials for microelectronics," J. Appl. Phys., vol. 93, pp. 8793-8841, 2003.
    [13] B. J. FEDER, "I.B.M. stretches silicon in new ways to speed up chips," in The New York Times, Jun. 8, 2001.
    [14] IBM. IBM's strained silicon breakthrough image page. Available: http://www.research.ibm.com/resources/press/strainedsilicon/
    [15] S. E. Thompson, M. Armstrong, C. Auth, S. Cea, R. Chau, G. Glass, T. Hoffman, J. Klaus, Z. Y. Ma, B. McIntyre, et al., "A logic nanotechnology featuring strained-silicon," IEEE Electron Device Lett., vol. 25, pp. 191-193, 2004.
    [16] R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, and M. Metz, "High-κ/metal-gate stack and its MOSFET characteristics," IEEE Electron Device Lett., vol. 25, pp. 408-410, 2004.
    [17] K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, M. Brazier, M. Buehler, A. Cappellani, R. Chau, et al., "A 45nm logic technology with high-κ plus metal gate transistors, strained silicon, 9 Cu interconnect layers, 193nm dry patterning, and 100% Pb-free packaging," in Tech. Dig. - Int. Electron Devices Meet., 2007, pp. 247-250.
    [18] M. Bohr, "The new era of scaling in an SoC world," presented at the IEEE Int. Solid-State Circuits Conf. (ISSCC), 2009.
    [19] J. del Alamo and D. Antoniadis, "Emerging nanotechnology and nano- electronics," presented at the IEDM Short Course, 2007.
    [20] M. Heyns and W. Tsai, "Ultimate scaling of CMOS logic devices with Ge and III-V materials," MRS Bull., vol. 34, pp. 485-492, 2009.
    [21] B. Baker, "Keynote: Silicon leadership—delivering innovation," presented at the Intel Developer Forum (IDF), 2009.
    [22] J. Markoff, "For chip makers, hybrids may be a way forward," in The New York Times, Dec. 15, 2008.
    [23] D.-H. Kim and J. A. del Alamo, "30 nm E-mode InAs PHEMTs for THz and future logic applications," in Tech. Dig. - Int. Electron Devices Meet., 2008, pp. 719-722.
    [24] K. Navrátil, I. Ohlídal, and F. Lukes, "The physical structure of the interface between single-crystal GaAs and its oxide film," Thin Solid Films, vol. 56, pp. 163-171, 1979.
    [25] E. I. Chen, J. N. Holonyak, and S. A. Maranowski, "AlxGa1-xAs—GaAs metal—oxide semiconductor field effect transistors formed by lateral water vapor oxidation of AlAs," Appl. Phys. Lett., vol. 66, pp. 2688-2690, 1995.
    [26] C. W. Wilmsen, "Chemical composition and formation of thermal and anodic oxide/III-V compound semiconductor interfaces," J. Vac. Sci. Technol., vol. 19, pp. 279-289, 1981.
    [27] C. W. Wilmsen, "Physics and chemistry of III-V compound semiconductor interface," C. W. Wilmsen, Ed., New York: Plenum, 1985, p. 435.
    [28] H. L. Hartnegal and R. Reimenschneider, "Properties of gallium arsenide," M. R. Brozel and G. E. Stillman, Eds., 3rd ed. London: INSPEC, Institution of Electrical Engineers, 1996, p. 482.
    [29] T. Sawada, H. Hasegawa, and H. Ohno, "Electronic properties of a photochemical oxide-GaAs interface," Jpn. J. Appl. Phys., vol. 26, pp. L1871-L1873, Nov 1987.
    [30] H. Becke, R. Hall, and J. White, "Gallium arsenide MOS transistors," Solid-State Electron., vol. 8, pp. 813-818, 1965.
    [31] S. Tiwari, S. L. Wright, and J. Batey, "Unpinned GaAs MOS capacitors and transistors," IEEE Electron Device Lett., vol. 9, pp. 488-490, 1988.
    [32] J. L. Freeouf, D. A. Buchanan, S. L. Wright, T. N. Jackson, and B. Robinson, "Accumulation capacitance for GaAs-SiO2 interfaces with Si interlayers," Appl. Phys. Lett., vol. 57, pp. 1919-1921, 1990.
    [33] A. Callegari, P. D. Hoh, D. A. Buchanan, and D. Lacey, "Unpinned gallium oxide/GaAs interface by hydrogen and nitrogen surface plasma treatment," Appl. Phys. Lett., vol. 54, pp. 332-334, 1989.
    [34] E. S. Aydil, K. P. Giapis, R. A. Gottscho, V. M. Donnelly, and E. Yoon, "Ammonia plasma passivation of GaAs in downstream microwave and radio-frequency parallel plate plasma reactors," J. Vac. Sci. Technol., vol. 11, pp. 195-205, 1993.
    [35] M. Hong, C. T. Liu, H. Reese, and J. Kwo, "Semiconductor-insulator interfaces," in Encyclopedia of Electrical and Electronics Engineering, vol. 19, J. G. Webster, Ed., New York: John Wiley & Sons, 1999, pp. 87-100.
    [36] M. Hong, J. Kwo, T. D. Lin, M. L. Huang, W. C. Lee, and P. Chang, "InGaAs, Ge, and GaN Metal-Oxide-Semiconductor Devices with High-k Dielectrics for Science and Technology Beyond Si CMOS," in Fundamentals of III-V Semiconductor MOSFETs, S. Oktyabrsky and P. Ye, Eds., 1st ed: Springer US, 2010, pp. 251-284.
    [37] M. Hong, M. Passlack, J. P. Mannaerts, J. Kwo, S. N. G. Chu, N. Moriya, S. Y. Hou, and V. J. Fratello, "Low interface state density oxide-GaAs structures fabricated by in situ molecular beam epitaxy," J. Vac. Sci. Technol. B, vol. 14, pp. 2297-2300, 1996.
    [38] M. Hong, J. P. Mannaerts, J. E. Bower, J. Kwo, M. Passlack, W. Y. Hwang, and L. W. Tu, "Novel Ga2O3(Gd2O3) passivation techniques to produce low Dit oxide-GaAs interfaces," J. Cryst. Growth, vol. 175-176, pp. 422-427, 1997.
    [39] M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, and A. M. Sergent, "Epitaxial cubic gadolinium oxide as a dielectric for gallium arsenide passivation," Science, vol. 283, pp. 1897-1900, 1999.
    [40] J. Kwo, D. W. Murphy, M. Hong, R. L. Opila, J. P. Mannaerts, A. M. Sergent, and R. L. Masaitis, "Passivation of GaAs using (Ga2O3)1 - x(Gd2O3)x, 0 ≤ x ≤1.0 films," Appl. Phys. Lett., vol. 75, pp. 1116-1118, 1999.
    [41] J. Kwo, M. Hong, J. P. Mannaerts, Y. D. Wu, Q. Y. Lee, B. Yang, and T. Gustafsson, "Fundamental study and oxide reliability of the MBE grown Ga2-xGdxO3 dielectrics for compound semiconductor MOSFETs," in Mat. Res. Soc. Symp. Proc., 2004, pp. E1.12.1-E1.12.6.
    [42] P. D. Ye, G. D. Wilk, B. Yang, J. Kwo, H.-J. L. Gossmann, M. Hong, K. K. Ng, and J. Bude, "Depletion-mode InGaAs metal-oxide-semiconductor field-effect transistor with oxide gate dielectric grown by atomic-layer deposition," Appl. Phys. Lett., vol. 84, pp. 434-436, 2004.
    [43] M. M. Frank, G. D. Wilk, D. Starodub, T. Gustafsson, E. Garfunkel, Y. J. Chabal, J. Grazul, and D. A. Muller, "HfO2 and Al2O3 gate dielectrics on GaAs grown by atomic layer deposition," Appl. Phys. Lett., vol. 86, p. 152904, 2005.
    [44] M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu, and M. Hong, "Surface passivation of III-V compound semiconductors using atomic-layer-deposition-grown Al2O3," Appl. Phys. Lett., vol. 87, p. 252104, 2005.
    [45] C. H. Chang, Y. K. Chiou, Y. C. Chang, K. Y. Lee, T. D. Lin, T. B. Wu, M. Hong, and J. Kwo, "Interfacial self-cleaning in atomic layer deposition of HfO2 gate dielectric on In0.15Ga0.85As," Appl. Phys. Lett., vol. 89, p. 242911, 2006.
    [46] Y. Xuan, Y. Q. Wu, T. Shen, T. Yang, and P. D. Ye, "High performance submicron inversion-type enhancement-mode InGaAs MOSFETs with ALD Al2O3, HfO2, and HfAlO as gate dielectrics," in Tech. Dig. - Int. Electron Devices Meet., 2007, pp. 637-640.
    [47] Y. C. Chang, M. L. Huang, K. Y. Lee, Y. J. Lee, T. D. Lin, M. Hong, J. Kwo, T. S. Lay, C. C. Liao, and K. Y. Cheng, "Atomic-layer-deposited HfO2 on In0.53Ga0.47As: Passivation and energy-band parameters," Appl. Phys. Lett., vol. 92, p. 072901, 2008.
    [48] H. C. Chin, M. Zhu, G. S. Samudra, and Y. C. Yeo, "n-channel GaAs MOSFET with TaN/HfAlO gate stack formed using in situ vacuum anneal and silane passivation," J. Electrochem. Soc., vol. 155, pp. H464-H468, 2008.
    [49] J. Q. Lin, S. J. Lee, H. J. Oh, G. Q. Lo, D. L. Kwong, and D. Z. Chi, "Inversion-mode self-aligned In0.53Ga0.47As N-channel metal-oxide- semiconductor field-effect transistor with HfAlO gate dielectric and TaN metal gate," IEEE Electron Device Lett., vol. 29, pp. 977-980, 2008.
    [50] S. Koveshnikov, N. Goel, P. Majhi, H. Wen, M. B. Santos, S. Oktyabrsky, V. Tokranov, R. Kambhampati, R. Moore, F. Zhu, et al., "In0.53Ga0.47As based metal oxide semiconductor capacitors with atomic layer deposition ZrO2 gate oxide demonstrating low gate leakage current and equivalent oxide thickness less than 1 nm," Appl. Phys. Lett., vol. 92, p. 222904, 2008.
    [51] S. Koveshnikov, W. Tsai, I. Ok, J. C. Lee, V. Torkanov, M. Yakimov, and S. Oktyabrsky, "Metal-oxide-semiconductor capacitors on GaAs with high-k gate oxide and amorphous silicon interface passivation layer," Appl. Phys. Lett., vol. 88, p. 022106, 2006.
    [52] J. P. de Souza, E. Kiewra, Y. Sun, A. Callegari, D. K. Sadana, G. Shahidi, D. J. Webb, J. Fompeyrine, R. Germann, C. Rossel, et al., "Inversion mode n-channel GaAs field effect transistor with high-k/metal gate," Appl. Phys. Lett., vol. 92, p. 153508, 2008.
    [53] H.-S. Kim, I. Ok, M. Zhang, T. Lee, F. Zhu, L. Yu, J. C. Lee, S. Koveshnikov, W. Tsai, V. Tokranov, et al., "Depletion-mode GaAs metal-oxide-semiconductor field-effect transistor with HfO2 dielectric and germanium interfacial passivation layer," Appl. Phys. Lett., vol. 89, p. 222904, 2006.
    [54] F. Gao, S. J. Lee, R. Li, S. J. Whang, S. Balakumar, D. Z. Chi, C. C. Kean, S. Vicknesh, C. H. Tung, D. L. Kwong, et al., "GaAs p- and n-MOS devices integrated with novel passivation (plasma nitridation and AIN-surface passivation) techniques and ALD-HfO2/TaN gate stack," in Tech. Dig. - Int. Electron Devices Meet., 2006, pp. 583-586.
    [55] J. Kwo, D. W. Murphy, M. Hong, J. P. Mannaerts, R. L. Opila, R. L. Masaitis, and A. M. Sergent, "Passivation of GaAs using gallium-gadolinium oxides," J. Vac. Sci. Technol. B, vol. 17, pp. 1294-1296, 1999.
    [56] M. Hong, Z. H. Lu, J. Kwo, A. R. Kortan, J. P. Mannaerts, J. J. Krajewski, K. C. Hsieh, L. J. Chou, and K. Y. Cheng, "Initial growth of Ga2O3(Gd2O3) on GaAs: Key to the attainment of a low interfacial density of states," Appl. Phys. Lett., vol. 76, pp. 312-314, 2000.
    [57] M. L. Huang, Y. C. Chang, C. H. Chang, T. D. Lin, J. Kwo, T. B. Wu, and M. Hong, "Energy-band parameters of atomic-layer-deposition Al2O3/InGaAs heterostructure," Appl. Phys. Lett., vol. 89, p. 012903, 2006.
    [58] K. Y. Lee, Y. J. Lee, P. Chang, M. L. Huang, Y. C. Chang, M. Hong, and J. Kwo, "Achieving 1 nm capacitive effective thickness in atomic layer deposited HfO2 on In0.53Ga0.47As," Appl. Phys. Lett., vol. 92, p. 252908, 2008.
    [59] M. Hong, W. C. Lee, M. L. Huang, Y. C. Chang, T. D. Lin, Y. J. Lee, J. Kwo, C. H. Hsu, and H. Y. Lee, "Defining new frontiers in electronic devices with high κ dielectrics and interfacial engineering," Thin Solid Films, vol. 515, pp. 5581-5586, 2007.
    [60] M. W. Hong, J. R. Kwo, P. C. Tsai, Y. C. Chang, M. L. Huang, C. P. Chen, and T. D. Lin, "III-V metal-oxide-semiconductor field-effect transistors with high κ dielectrics," Jpn. J. Appl. Phys, vol. 46, pp. 3167-3180, 2007.
    [61] J. Kwo and M. Hong, "Research advances on III-V MOSFET electronics beyond Si CMOS," J. Cryst. Growth, vol. 311, pp. 1944-1949, 2009.
    [62] R. M. Wallace, P. C. McIntyre, J. Kim, and Y. Nishi, "Atomic layer deposition of dielectrics on Ge and III-V Materials for ultrahigh performance transistors," MRS Bull., vol. 34, pp. 493-503, 2009.
    [63] M. Houssa, E. Chagarov, and A. Kummel, "Surface defects and passivation of Ge and III-V Interfaces," MRS Bull., vol. 34, pp. 504-513, 2009.
    [64] M. Hong, J. Kwo, T. D. Lin, and M. L. Huang, "InGaAs metal-oxide- semiconductor devices with Ga2O3(Gd2O3) high κ dielectrics for science and technology beyond Si CMOS," MRS Bull., vol. 34, pp. 514-521, 2009.
    [65] M. Caymax, G. Brammertz, A. Delabie, S. Sioncke, D. Lin, M. Scarrozza, G. Pourtois, W. E. Wang, M. Meuris, and M. Heyns, "Interfaces of high-κ dielectrics on GaAs: Their common features and the relationship with Fermi level pinning," Microelectron. Eng., vol. 86, pp. 1529-1535, 2009.
    [66] P. C. McIntyre, Y. Oshima, E. Kim, and K. C. Saraswat, "Interface studies of ALD-grown metal oxide insulators on Ge and III-V semiconductors," Microelectron. Eng., vol. 86, pp. 1536-1539, 2009.
    [67] W. Tsai, N. Goel, S. Koveshnikov, P. Majhi, and W. Wang, "Challenges of integration of high-κ dielectric with III-V materials," Microelectron. Eng., vol. 86, pp. 1540-1543, 2009.
    [68] J. Robertson, "Interface states model for III-V oxide interfaces," Microelectron. Eng., vol. 86, pp. 1558-1560, JUL-SEP 2009.
    [69] S. Oktyabrsky and P. Ye, Eds., Fundamentals of III-V Semiconductor MOSFETs. Springer US, 2010.
    [70] N. Goel, P. Majhi, C. O. Chui, W. Tsai, D. Choi, and J. S. Harris, "InGaAs metal-oxide-semiconductor capacitors with HfO2 gate dielectric grown by atomic-layer deposition," Appl. Phys. Lett., vol. 89, p. 163517, 2006.
    [71] Y. Xuan, H.-C. Lin, and P. D. Ye, "Simplified surface preparation for GaAs passivation using atomic layer-deposited high-κ dielectrics," IEEE Trans. Electron Devices, vol. 54, pp. 1811-1817, 2007.
    [72] K. H. Shiu, T. H. Chiang, P. Chang, L. T. Tung, M. Hong, J. Kwo, and W. Tsai, "1 nm equivalent oxide thickness in Ga2O3(Gd2O3)/In0.2Ga0.8As metal-oxide- semiconductor capacitors," Appl. Phys. Lett., vol. 92, p. 172904, 2008.
    [73] F. Ren, M. W. Hong, W. S. Hobson, J. M. Kuo, J. R. Lothian, J. P. Mannaerts, J. Kwo, Y. K. Chen, and A. Y. Cho, "Enhancement-mode p-channel GaAs MOSFETs on semi-insulating substrates," in Tech. Dig. - Int. Electron Devices Meet., 1996, pp. 943-945.
    [74] F. Ren, M. Hong, W. S. Hobson, J. M. Kuo, J. R. Lothian, J. P. Mannaerts, J. Kwo, S. N. G. Chu, Y. K. Chen, and A. Y. Cho, "Demonstration of enhancement-mode p- and n-channel GaAs MOSFETs with Ga2O3(Gd2O3) as gate oxide," Solid-State Electron., vol. 41, pp. 1751-1753, 1997.
    [75] F. Ren, J. M. Kuo, M. Hong, W. S. Hobson, J. R. Lothian, J. Lin, H. S. Tsai, J. P. Mannaerts, J. Kwo, S. N. G. Chu, et al., "Ga2O3(Gd2O3)/InGaAs enhancement- mode n-channel MOSFETs," IEEE Electron Device Lett., vol. 19, pp. 309-311, 1998.
    [76] Y. C. Wang, M. Hong, J. M. Kuo, J. P. Mannaerts, J. Kwo, H. S. Tsai, J. J. Krajewski, J. S. Weiner, Y. K. Chen, and A. Y. Cho, "Advances in GaAs MOSFETs Using Ga2O3(Gd2O3) as Gate Oxide," in Mat. Res. Soc. Symp. Proc. vol. 573, 1999, pp. 219-225.
    [77] Y. Xuan, H. C. Lin, P. D. Ye, and G. D. Wilk, "Capacitance-voltage studies on enhancement-mode InGaAs metal-oxide-semiconductor field-effect transistor using atomic-layer-deposited Al2O3 gate dielectric," Appl. Phys. Lett., vol. 88, p. 263518, 2006.
    [78] Y. Xuan, Y. Q. Wu, H. C. Lin, T. Shen, and P. D. Ye, "Submicrometer inversion-type enhancement-mode InGaAs MOSFET with atomic-layer- deposited Al2O3 as gate dielectric," IEEE Electron Device Lett., vol. 28, pp. 935-938, 2007.
    [79] Y. Xuan, Y. Q. Wu, and P. D. Ye, "High-performance inversion-type enhancement-mode InGaAs MOSFET with maximum drain current exceeding 1 A/mm," IEEE Electron Device Lett., vol. 29, pp. 294-296, 2008.
    [80] H. C. Chiu, T. D. Lin, P. Chang, W. C. Lee, C. H. Chiang, J. Kwo, Y. S. Lin, S. S. H. Hsu, T. W., and M. Hong, "Self-aligned Inversion Channel In0.53Ga0.47As N-MOSFETs with ALD-Al2O3 and MBE-Al2O3/Ga2O3(Gd2O3) as Gate Dielectrics," in International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), 2009, pp. 141-142.
    [81] H. C. Chiu, P. Chang, M. L. Huang, T. D. Lin, Y. H. Chang, J. C. Huang, S. Z. Chen, J. Kwo, W. Tsai, and M. Hong, "High performance self-aligned inversion-channel MOSFETs with In0.53Ga0.47As channel and ALD-Al2O3," in 67th Device Res. Conf. Dig., 2009, pp. 83-84.
    [82] H. C. Lin, W. E. Wang, G. Brammertz, M. Meuris, and M. Heyns, "Electrical study of sulfur passivated In0.53Ga0.47As MOS capacitor and transistor with ALD Al2O3 as gate insulator," Microelectron. Eng., vol. 86, pp. 1554-1557, 2009.
    [83] D. Shahrjerdi, T. Rotter, G. Balakrishnan, D. Huffaker, E. Tutuc, and S. K. Banerjee, "Fabrication of self-aligned enhancement-mode In0.53Ga0.47As MOSFETs with TaN/HfO2/AlN gate stack," IEEE Electron Device Lett., vol. 29, pp. 557-560, 2008.
    [84] A. M. Sonnet, C. L. Hinkle, M. N. Jivani, R. A. Chapman, G. P. Pollack, R. M. Wallace, and E. M. Vogel, "Performance enhancement of n-channel inversion type InxGa1-xAs metal-oxide-semiconductor field effect transistor using ex situ deposited thin amorphous silicon layer," Appl. Phys. Lett., vol. 93, p. 122109, 2008.
    [85] H.-S. Kim, I. Ok, F. Zhu, M. Zhang, S. Park, J. Yum, H. Zhao, P. Majhi, D. I. Garcia-Gutierrez, N. Goel, et al., "High mobility HfO2-based In0.53Ga0.47As n-channel metal-oxide-semiconductor field effect transistors using a germanium interfacial passivation layer," Appl. Phys. Lett., vol. 93, p. 132902, 2008.
    [86] M. Passlack, K. Rajagopalan, J. Abrokwah, and R. Droopad, "Implant-free high-mobility flatband MOSFET: principles of operation," IEEE Trans. Electron Devices, vol. 53, pp. 2454-2459, 2006.
    [87] K. Rajagopalan, J. Abrokwah, R. Droopad, and M. Passlack, "Enhancement- mode GaAs n-channel MOSFET," IEEE Electron Device Lett., vol. 27, pp. 959-962, 2006.
    [88] K. Rajagopalan, R. Droopad, J. Abrokwah, P. Zurcher, P. Fejes, and M. Passlack, "1-um Enhancement Mode GaAs N-channel MOSFETs with Transconductance Exceeding 250 mS/mm," IEEE Electron Device Lett., vol. 28, pp. 100-102, 2007.
    [89] R. J. W. Hill, D. A. J. Moran, X. Li, H. Zhou, D. Macintyre, S. Thoms, A. Asenov, P. Zurcher, K. Rajagopalan, J. Abrokwah, et al., "Enhancement-mode GaAs MOSFETs with an In0.3Ga0.7As channel, a mobility of over 5000 cm2/Vs, and transconductance of over 475 mS/mm," IEEE Electron Device Lett., vol. 28, pp. 1080-1082, 2007.
    [90] Y. Sun, E. W. Kiewra, S. J. Koester, N. Ruiz, A. Callegari, K. E. Fogel, D. K. Sadana, J. Fompeyrine, D. J. Webb, J. P. Locquet, et al., "Enhancement-mode buried-channel In0.7Ga0.3As/In0.52Al0.48As MOSFETs with high-k gate dielectrics," IEEE Electron Device Lett., vol. 28, pp. 473-475, 2007.
    [91] Y. Sun, E. W. Kiewra, J. P. de Souza, J. J. Bucchignano, K. E. Fogel, D. K. Sadana, and G. G. Shahidi, "Scaling of In0.7Ga0.3As buried-channel MOSFETs," in Tech. Dig. - Int. Electron Devices Meet., 2008, pp. 367-370.
    [92] C. P. Chen, T. D. Lin, Y. J. Lee, Y. C. Chang, M. Hong, and J. Kwo, "Self-aligned inversion n-channel In0.2Ga0.8As/GaAs metal-oxide- semiconductor field-effect-transistors with TiN gate and Ga2O3(Gd2O3) dielectric," Solid-State Electron., vol. 52, pp. 1615-1618, 2008.
    [93] J. F. Ziegler. James Ziegler - SRIM & TRIM. Available: http://www.srim.org/
    [94] J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, "SRIM - The stopping and range of ions in matter (2010)," Nucl. Instr. Meth. B, vol. 268, pp. 1818-1823, 2010.
    [95] C. P. Chen, Y. J. Lee, Y. C. Chang, Z. K. Yang, M. Hong, J. Kwo, H. Y. Lee, and T. S. Lay, "Structural and electrical characteristics of Ga2O3(Gd2O3)/GaAs under high temperature annealing," J. Appl. Phys., vol. 100, p. 104502, 2006.
    [96] Y. L. Huang, P. Chang, Z. K. Yang, Y. J. Lee, H. Y. Lee, H. J. Liu, J. Kwo, J. P. Mannaerts, and M. Hong, "Thermodynamic stability of Ga2O3(Gd2O3)/GaAs interface," Appl. Phys. Lett., vol. 86, p. 191905, 2005.
    [97] T. D. Lin, "Progress report," Advanced Nano Thin Film Epitaxy Lab, Hsinchu, Taiwan, Dec. 25, 2006.
    [98] J. F. Zheng, W. Tsai, T. D. Lin, Y. J. Lee, C. P. Chen, M. Hong, J. Kwo, S. Cui, and T. P. Ma, "Ga2O3(Gd2O3)/Si3N4 dual-layer gate dielectric for InGaAs enhancement mode metal-oxide-semiconductor field-effect transistor with channel inversion," Appl. Phys. Lett., vol. 91, p. 223502, 2007.
    [99] T. P. Ma, "Making silicon nitride film a viable gate dielectric," IEEE Trans. Electron Devices, vol. 45, pp. 680-690, 1998.
    [100] T. D. Lin, C. P. Chen, M. L. Huang, Y. J. Lee, C. H. Lee, M. C. Pan, M. Hong, J. Kwo, J. F. Zheng, W. Tsai, et al., "Growth and material characteristics of Ga2O3(Gd2O3)/Si3N4 dual-layer gate dielectric for inversion-channel and depletion mode GaAs-based MOSFET," presented at the MRS Spring Meeting, 2007.
    [101] K. H. Shiu, C. H. Chiang, Y. J. Lee, W. C. Lee, P. Chang, L. T. Tung, M. Hong, J. Kwo, and W. Tsai, "Oxide scalability in Al2O3/Ga2O3(Gd2O3)/In0.20Ga0.80As/ GaAs heterostructures," J. Vac. Sci. Technol. B, vol. 26, pp. 1132-1135, 2008.
    [102] B. Yang, P. D. Ye, J. Kwo, M. R. Frei, H. J. L. Gossmann, J. P. Mannaerts, M. Sergent, M. Hong, K. Ng, and J. Bude, "Impact of metal/oxide interface on DC and RF performance of depletion-mode GaAs MOSFET employing MBE grown Ga2O3(Gd2O3) as gate dielectric," J. Cryst. Growth, vol. 251, pp. 837-842, 2003.
    [103] Y. Xuan, T. Shen, M. Xu, Y. Q. Wu, and P. D. Ye, "High-performance surface channel In-rich In0.75Ga0.25As MOSFETs with ALD high-κ as gate dielectric," in Tech. Dig. - Int. Electron Devices Meet., 2008, pp. 371-374.
    [104] Y. D. Wu, T. D. Lin, T. H. Chiang, Y. C. Chang, H. C. Chiu, Y. J. Lee, M. Hong, C. A. Lin, and J. Kwo, "Engineering of threshold voltages in molecular beam epitaxy-grown Al2O3/Ga2O3(Gd2O3)/In0.2Ga0.8As," J. Vac. Sci. Technol. B, vol. 28, pp. C3H10-C3H13, 2010.
    [105] T. D. Lin, Y. D. Wu, Y. C. Chang, T. H. Chiang, C. Y. Chuang, C. A. Lin, W. H. Chang, H. C. Chiu, W. Tsai, J. Kwo, et al., "Achieving nearly free Fermi-level movement and Vth Engineering in Ga2O3(Gd2O3)/In0.2Ga0.8As," in 67th Device Res. Conf. Dig., 2009, pp. 127-128.
    [106] T. D. Lin, H. C. Chiu, P. Chang, L. T. Tung, C. P. Chen, M. Hong, J. Kwo, W. Tsai, and Y. C. Wang, "High-performance self-aligned inversion-channel In0.53Ga0.47As metal-oxide-semiconductor field-effect-transistor with Al2O3/ Ga2O3(Gd2O3) as gate dielectrics," Appl. Phys. Lett., vol. 93, p. 033516, 2008.
    [107] T. D. Lin, P. Chang, H. C. Chiu, M. Hong, J. Kwo, Y. S. Lin, and S. S. H. Hsu, "dc and rf characteristics of self-aligned inversion-channel In0.53Ga0.47As metal-oxide-semiconductor field-effect transistors using molecular beam epitaxy-Al2O3/Ga2O3(Gd2O3) as gate dielectrics," J. Vac. Sci. Technol. B, vol. 28, pp. C3H14-C3H17, 2010.
    [108] D. K. Schroder, "MOSFET Mobility," in Semiconductor Material and Device Characterization, 3rd ed Hoboken, New Jersey: John Wiley and Sons, Inc., 2005, pp. 489-503.
    [109] T. D. Lin, H. C. Chiu, P. Chang, W. C. Lee, T. H. Chiang, J. R. Kwo, W. Tsai, and M. Hong, "InGaAs MOSCAPs and self-aligned inversion-channel MOSFETs with Al2O3/Ga2O3(Gd2O3) as a gate dielectric," ECS Trans., vol. 19, pp. 351-360, 2009.
    [110] D.-H. Kim and J. A. del Alamo, "30-nm InAs Pseudomorphic HEMTs on an InP Substrate With a Current-Gain Cutoff Frequency of 628 GHz," IEEE Electron Device Lett., vol. 29, pp. 830-833, 2008.
    [111] M. Passlack, P. Zurcher, K. Rajagopalan, R. Droopad, J. Abrokwah, M. Tutt, Y.-B. Park, E. Johnson, O. Hartin, A. Zlotnicka, et al., "High mobility III-V MOSFETs for rf and digital applications," in Tech. Dig. - Int. Electron Devices Meet., 2007, pp.621-624.
    [112] C. Y. Chan, S. C. Chen, M. H. Tsai, and S. Hsu, "Wiring Effect Optimization in 65-nm Low-Power NMOS," IEEE Electron Device Lett., vol. 29, pp. 1245-1248, 2008.
    [113] Y. Q. Wu, W. K. Wang, O. Koybasi, D. N. Zakharov, E. A. Stach, S. Nakahara, J. C. M. Hwang, and P. D. Ye, "0.8-V supply voltage deep-submicrometer inversion-mode In0.75Ga0.25As MOSFET," IEEE Electron Device Lett., vol. 30, pp. 700-702, 2009.
    [114] Y. Q. Wu, M. Xu, R. S. Wang, O. Koybasi, and P. D. Ye, "High performance deep-submicron inversion-mode InGaAs MOSFETs with maximum Gm exceeding 1.1 mS/mm: new HBr pretreatment and channel engineering," Tech. Dig. - Int. Electron Devices Meet., 2009, pp. 296-299.
    [115] T. D. Lin, H. C. Chiu, P. Chang, Y. H. Chang, Y. D. Wu, M. Hong, and J. Kwo, "Self-aligned inversion-channel In0.75Ga0.25As metal-oxide-semiconductor field- effect-transistors using UHV-Al2O3/Ga2O3(Gd2O3) and ALD-Al2O3 as gate dielectrics," Solid-State Electron., vol. 54, pp. 915-924, 2010.
    [116] H. C. Chiu, L. T. Tung, Y. H. Chang, Y. J. Lee, C. C. Chang, J. Kwo, and M. Hong, "Achieving a low interfacial density of states in atomic layer deposited Al2O3 on In0.53Ga0.47As," Appl. Phys. Lett., vol. 93, p. 202903, 2008.
    [117] P. D. Ye, "Main determinants for III-V metal-oxide-semiconductor field-effect transistors," J. Vac. Sci. Technol. A, vol. 26, pp. 697-704, 2008.
    [118] Y. Q. Wu, R. S. Wang, T. Shen, G. J. J., and P. D. Ye, "First experimental demonstration of 100 nm Inversion-mode InGaAs FinFET through damage-free sidewall etching," Tech. Dig. - Int. Electron Devices Meet, pp. 331-334, 2009.
    [119] H. C. Chin, X. Gong, X. K. Liu, and Y. C. Yeo, "Lattice-mismatched In0.4Ga0.6As source/drain stressors with in situ doping for strained In0.53Ga0.47As Channel n-MOSFETs," IEEE Electron Device Lett., vol. 30, pp. 805-807, Aug 2009.
    [120] T. D. Lin, P. Chang, Y. D. Wu, H. C. Chiu, J. Kwo, and M. Hong, "Achieving very high drain current of 1.23 mA/μm in a 1μm-gate-length self-aligned inversion-channel MBE-Al2O3/Ga2O3(Gd2O3)/In0.75Ga0.25As MOSFET," submitted to J. Cryst. Growth.
    [121] M. Radosavljevic, B. Chu-Kung, S. Corcoran, G. Dewey, M. K. Hudait, J. M. Fastenau, J. Kavalieros, W. K. Liu, D. Lubyshev, M. Metz, et al., "Advanced high-k gate dielectric for high-performance short-channel In0.7Ga0.3As quantum well field effect transistors on silicon substrate for low power logic applications " in Tech. Dig. - Int. Electron Devices Meet., 2009, pp. 319-322.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE