研究生: |
陳詩鎰 Chen, Shih-I |
---|---|
論文名稱: |
研究光子晶體晶格結構及有機材料的出光特性 A study of the organic material emission characteristics in photonic crystal lattice structures |
指導教授: |
楊士禮
Yang, Sidney |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2009 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 光子晶體 、有機雷射 、邊緣能帶型 |
外文關鍵詞: | Photonic Crystal, Organic Laser, Band Edge Laser |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
拜近幾年奈米製程技術的發展之賜,光子晶體的研究得以由波長較長的微波、通訊波段漸漸往更短波長的可見光甚至紫外光發展。因此光子晶體被廣泛的研究及應用在光通訊、LED照明及雷射…等不同領域。本論文主要利用二維能帶邊緣型光子晶體雷射了解晶格結構及有機發光材料的發光特性。有機材料上我們使用高效率的藍光高分子Poly(9,9-dioctylfluorenyl-2,7-diyl) end capped with dimethylphenyl,簡稱PFO-DMP來當作增益介值。研究當光子晶體雷射晶格為正方晶格漸漸變成長方晶格時,用光子晶體理論去計算其頻帶和所對應的模態並且量測雷射波長、極化及遠場繞射的隨著晶格邊長而變化關係。另外我們使用一組固定r/a比0.35的正方晶格來量測PFO-DMP的增益性質,利用簡單的一維共振腔模型分析PFO-DMP的emission cross section對應波長的關係。
Thanks to the development of nano-fabrication technology, the research of photonic crystals progress from longer to shorter wavelength(ex. Microwave to U.V. light).Therefore, it is extensively discussed and utilized in optic communication, L.E.D lighting and laser …etc. The main topic in this thesis is utilizing band edge photonic crystal lasers to figure out the emission characteristic of lattice structures and organic lighting material. We used the high efficiency blue light polymer, Poly(9,9-dioctylfluorenyl-2,7-diyl) end capped with dimethylphenyl, PFO-DMP, as the gain media. We used the theory of photonic crystals to calculate the band structure and corresponding modes and measure the wavelength , polarization, and far-field diffraction pattern of lasers with different lattice structures. On the other hand, we employed a set of square lattice with different lattice constant and fixed r/a ratio (0.35) to measure the PFO-DMP gain characteristic and 1D resonance cavity model to analyze the emission cross section between emission cross section and wavelength.
Reference
[1] E. Yablonovitch,”Inhibited Spontaneous Emission in Solid-State Physics and Electronics,”Phys. Rev. Lett. 58, 2059 (1987).
[2] S. John, ”Strong localization of photons in certain disordered dielectric super lattices,”Phys. Rev. Lett. 58, 2486 (1987).
[3] 蔡雅芝,”物理雙月刊”,廿一卷四期,(1999)
[4] Y. Fink, N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, “A dielectric omnidirectional reflector, “ Science 282, 1679,(1998)
[5] John D. Joannopoulos, Steven G. Johnson, Joshua N. Winn, Robert D. Meade, “Photonic Crystals-Molding the Flow of Light 2nd ed.”, Princeton (2008)
[6] Masatoshi Tokushima, Hideo Kosaka, Akihisa Tomita, and Hirohito Yamada ,” Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide “Appl. Phys. Lett. Vol 76, 821( 2000)
[7] C. Reese and B. Gayral,B. D. Gerardot,A. Imamogˇ lu,P. M. Petroff and E. Hu, ” High-Q photonic crystal microcavities fabricated in a thin GaAs membrane”, J. Vac. Sci. Technol. B, Vol. 19, No. 6( 2001)
[8] T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber”, Optics Leet.961, Vol. 22, No. 13(1997)
[9] S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith,R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki,S. R. Kurtz and Jim Bur, ” A three dimensional photonic crystal operating at infrared wavelengths”,
74
Nature 394, 251 (1998)
[10] O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. OÕBrien, P. D. Dapkus, I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819 (1999).
[11] Jonathan P. Dowling, Michael Scalora, Mark J. Bloemer, Charles M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896 (1994).
[12] Masahiro Imada, Susumu Noda, Alongkarn Chutinan, Takashi Tokuda, Michio Murata, Goro Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316 (1999).
[13] W. D. Zhou, J. Sabarinathan, P. Bhattacharya, B.Kochman, E. W. Berg, P. C. Yu, S. W. Pang, “Characteristics of a Photonic Bandgap Single Defect Microcavity Electroluminescent Device,” IEEE J. Quantum Electron. 37, 1153 (2001).
[14] Mads Brøkner Christiansen, Anders Kristensen, Sanshui Xiao, and
Niels Asger Mortensen, “Photonic integration in k-space: Enhancing the performance of photonic crystal dye lasers”, Appl. Phys. Lett. 93, 231101 (2008)
[15] 陳金鑫、黃孝文, “OLED:Materials and Devices od Dream Display 夢幻顯示器:OLED材料與元件”, 初版,五南圖書出版公司,台北,2007。
[16] H. Haken and H. C. Wolf, “Molekülphysik und Quantenchemie”, Springer (1998)
[17] J.T. Verdeyen, “Laser Electronics”, Prentice Hell, USA, 234 (2000)
75
[18] J. Wilson and J. Hawkes, “Optoelectronics 3rd ed.” , Prentice Hell (1998)
[19] K. Sakoda, “Optical properties of Photonic Crystals” 2nd ed.” ,Springer
[20]A. Yariv, P. Yeh, “Optical Waves in Crystals”, John Wiley & Sons, New York (1984)
[21] Allen Taflove, Susan C. Hagness, “Computatuional Electrodyna- mics: The Finite-Difference Time-Domain Method”, Artech House Publishers; 2nd Bk & CD ed. (2000).
[22] Lie-Ming Li and Zhao-Qing Zhang, “Multiple-scattering approach to finite-sized photonic band-gap materials” George B. Arfken and Hans J. Weber, Mathematical Methods for Physicists, 5th ed., Academic Press (2000)
[23] 欒丕綱、陳啟昌,”光子晶體─從蝴蝶翅膀到奈米光子學”,初版,五南圖書出版公司,台北,2005。
[24] 林天敏,”負折射光子晶體模擬、製程與量測之研究”,清華大學物理系碩士論文,2007。
[25] Masahiro Imada, Alongkarn Chutinan, Susumu Noda, and Masamitsu Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers”, PHYSICAL REVIEW B, VOLUME 65, 195306 (2002)
[26] Chong-Jie Huang, “A Study of the Emission Characteristics of Organic Thin-film Two dimensional Photonic Band-edge Lasers”, National Tsing Hua University (2008)
[27] V. Reboud, P. Lovera, and N. Kehagias, “Two-dimensional polymer photonic crystal band-edge lasers fabricated by nanoimprint lithography” Appl. Phys. Lett. 91, 151101 (2007)
76
[28] http://nano.nchc.org.tw/dictionary/ebl.html
[29] Sidney S. Yang and Yun-Ching Chang, “Threshold Analysis of Longitudinal Modes from Surface Emitting Organic Distributed Feedback Lasers”, QELS(2007)
[30] W. Koechner, “Solid-State Laser Engineering”, Springer-Verlag ( 1992).