簡易檢索 / 詳目顯示

研究生: 呂葦庭
Lu, Wei-Ting
論文名稱: 利用TiO2光觸媒於室溫下裂解碳氫化合物製碳
Carbon Production at Room Temperature by TiO2 Photo-catalysis of Hydrocarbons
指導教授: 徐文光
Hsu, Wen-Kuang
口試委員: 呂昇益
Lu, Sheng-Yi
薛森鴻
Syue, Sen-Hong
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 46
中文關鍵詞: 二氧化鈦光催化製碳亞甲基藍
外文關鍵詞: TiO2, Photocatalysis, Carbon Production, Methylene Blue
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 碳化與石墨化代表二種無氧狀態下的熱處理溫度,前者約在400-800C而產物主要是sp2-sp3混成的無序碳;後者發生在1600C以上而產物是規則排列的碳層。自從1960年代發現在紫外光的照射下,二氧化鈦具備光裂解有機化合物的能力後,關於光觸媒的原理、機制及相關應用已被廣泛研究。大多數的研究聚焦在二氧化鈦改質以增加效率,較少著墨於二氧化鈦裂解有機化合物後的變化,因此本實驗致力於分析二氧化鈦在有機化合物裂解後於表面形成的碳生成物的結構及元素分析。
    本實驗以亞甲基藍為裂解物,以市售二氧化鈦P25進行光裂解、吸附的實驗後,蒐集溶液中的二氧化鈦製成粉末樣品,以電子顯微鏡觀測二氧化鈦表面的變化,並利用拉曼光譜分析裂解亞甲基藍的碳訊號。為了確認碳訊號是由光裂解亞甲基藍所生成,以甲基橙的樣品作為對照組,將樣品經高溫熱處理後再進行電子顯微鏡和拉曼光譜的分析。最後再利用固態核磁共振和化學分析電子能譜分析表面碳生成物的成份,發現透過紫外光催化二氧化鈦裂解亞甲基藍,可以在常溫下於二氧化鈦表面生成sp2的碳層。


    Carbonization and graphitization represent O2-free heat treatments at different temperatures; the former lies between 400-800C and products mainly consist of sp2-sp3 hybridized carbon with a low content of π-π conjugated structure and ill-layer orientation. The latter, on the other hand, takes place at a temperature exceeding 1600C so graphitized materials display well organized layer-by-layer structure. TiO2 is considered an ideal and powerful photocatalyst due to its chemical stability, nontoxicity, high reactivity and low cost for large scale of production. This work demonstrates for the first time carbon production at room temperature by TiO2 photo-catalysis of methylene blue (MB). Sp2-based carbon formation on TiO2 surfaces which compromises photocatalysis.

    摘要.......... i Abstract....... ii 誌謝........... iii 目錄........... iv 圖目錄......... vii 表目錄.......... ix 第一章、文獻回顧......... 1 1.1 二氧化鈦半導體研究的起源......1 1.2 二氧化鈦光催化的原理 ........2 1.3 二氧化鈦的發展及困境......... 3 1.3.1二氧化鈦光催化的應用 ........3 1.3.2 二氧化鈦光催化效率提升..... 4 1.3.4 二氧化鈦的毒化現象......... 5 1.4 sp2 碳的形成................ 6 第二章、研究動機 ................8 第三章、研究方法................ 9 3.1 實驗流程簡介 ................9 3.2 藥品與儀器 ................11 3.2.1藥品與耗材 ................11 3.2.1儀器 ................12 3.3 實驗分析 ................13 3.3.1 掃描式電子顯微鏡分析(Scan electron microscopy, SEM).. 13 3.3.2 拉曼光譜分析(Raman Spectroscopy)................... 14 3.3.3 穿透式電子顯微鏡分析 (Transmission electron microscopy, TEM)... 15 3.3.4 化學分析電子能譜分析 (ESCA)................ 16 3.3.5 固態核磁共振光譜分析(Solid State NMR)...... 17 3.3.6 X光粉末繞射分析........................... 18 第四章、結果與討論................................19 4.1光催化對二氧化鈦表面形貌之影響................. 19 4.1.1光催化裂解亞甲基藍之表面形貌討論............. 19 4.1.2增加二氧化鈦粒徑之表面形貌討論............... 21 4.1.3 裂解不同有機化合物之比較................... 24 4.2熱處理對於碳生成物之影響與討論..................26 4.3 碳生成物之成分、型態分析(SSNMR/ESCA)..........31 4.3.1 固態核磁共振光譜之分析與討論................ 31 4.3.2 化學分析電子能譜之分析與討論................ 34 第五章、結論.................................... 43 參考資料 ........................................45

    1加藤, 真. and 富. 増尾, 酸化チタンを光触媒とするテトラリンの液相酸化. 工業化学雑誌, 1964. 67(8): p. 1136-1140.
    2Fujishima, A. and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972. 238(5358): p. 37-38.
    3Nakata, K. and A. Fujishima, TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012. 13(3): p. 169-189.
    4Fujishima, A., X. Zhang, and D. Tryk, TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 2008. 63(12): p. 515-582.
    5Shaban, M., A.M. Ashraf, and M.R. Abukhadra, TiO2 Nanoribbons/Carbon Nanotubes Composite with Enhanced Photocatalytic Activity; Fabrication, Characterization, and Application. Scientific Reports, 2018. 8(1): p. 781.
    6Zhang, W., et al., Fabrication of TiO2/MoS2 Composite Photocatalyst and Its Photocatalytic Mechanism for Degradation of Methyl Orange under Visible Light. The Canadian Journal of Chemical Engineering, 2015. 93(9): p. 1594-1602.
    7Ansari, S.A., et al., Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. New Journal of Chemistry, 2016. 40(4): p. 3000-3009.
    8Oudar, J., Sulfur Adsorption and Poisoning of Metallic Catalysts. Catalysis Reviews, 1980. 22(2): p. 171-195.
    9Abdullah, M., G.K.C. Low, and R.W. Matthews, Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide. The Journal of Physical Chemistry, 1990. 94(17): p. 6820-6825.
    10Farouk, H.U., A.A.A. Raman, and W.M.A.W. Daud, TiO2 catalyst deactivation in textile wastewater treatment: Current challenges and future advances. Journal of Industrial and Engineering Chemistry, 2016. 33: p. 11-21.
    11Farner Budarz, J., et al., Influence of Aqueous Inorganic Anions on the Reactivity of Nanoparticles in TiO2 Photocatalysis. Langmuir, 2017. 33(11): p. 2770-2779.
    12Chan, K.-L., et al., Photocatalytic performance of bipyramidal anatase TiO2 toward the degradation organic dyes and its catalyst poisoning effect. Reaction Kinetics, Mechanisms and Catalysis, 2020. 130(1): p. 531-546.
    13Schüpfer, D.B., et al., Monitoring the thermally induced transition from sp3-hybridized into sp2-hybridized carbons. Carbon, 2021. 172: p. 214-227.
    14Trammell, M.P., Evaluation of the transient thermal performance of a graphite foam/phase change material composite. 2013.
    15Schuepfer, D.B., et al., Assessing the structural properties of graphitic and non-graphitic carbons by Raman spectroscopy. Carbon, 2020. 161: p. 359-372.
    16Butenko, Y., et al., Photoemission study of onionlike carbons produced by annealing nanodiamonds. Physical Review B, 2005. 71: p. 075420.
    17Porter, J.F., Y.-G. Li, and C.K. Chan, The effect of calcination on the microstructural characteristics and photoreactivity of Degussa P-25 TiO2. Journal of Materials Science, 1999. 34(7): p. 1523-1531.
    18Apopei, P., et al., Mixed-phase TiO2 photocatalysts: Crystalline phase isolation and reconstruction, characterization and photocatalytic activity in the oxidation of 4-chlorophenol from aqueous effluents. Applied Catalysis B Environmental, 2014. 160-161: p. 374-382.
    19Hossan, M.S. and B. Ochiai, Preparation of TiO2-Poly(3-Chloro-2-Hydroxypropyl Methacrylate) Nanocomposite for Selective Adsorption and Degradation of Dyes. Technologies, 2018. 6(4): p. 92.
    20Shen, A.-L., Y.-C. Weng, and T.-C. Chou, Effect of the Analytic Regions on the Quality Trend of Diamond-like/Graphitic Carbon Ratios in Raman Spectra. Zeitschrift für Naturforschung B, 2010. 65(1): p. 67-71.
    21Mazur, A., M. Vovk, and P. Tolstoy, Solid-state 13 C NMR of carbon nanostructures (milled graphite, graphene, carbon nanotubes, nanodiamonds, fullerenes) in 2000–2019: a mini-review. Fullerenes, Nanotubes and Carbon Nanostructures, 2019. 28: p. 1-12.
    22Methylene Blue(61–73-4) 13C NMR. (n.d.). Chemicalbook. Retrieved July 16, 2021, from https://www.chemicalbook.com/SpectrumEN_61-73-4_13CNMR.htm
    23Zhou, X., et al., Quantitative NEXAFS and solid-state NMR studies of sp3/(sp2+sp3) ratio in the hydrogenated DLC films. Diamond and Related Materials, 2017. 73: p. 232-240.
    24Methylene Orange(547-58-0) 13C NMR. (n.d.). Chemicalbook. Retrieved July 16, 2021, from https://www.chemicalbook.com/SpectrumEN_547-58-0_13CNMR.htm
    25Houas, A., et al., Photocatalytic Degradation Pathway of Methylene Blue in Water. Applied Catalysis B Environmental, 2001. 31: p. 145-157.
    26Hugenschmidt, M.B., L. Gamble, and C.T. Campbell, The interaction of H2O with a TiO2(110) surface. Surface Science, 1994. 302(3): p. 329-340.
    27Kim, B.J., J.P. Kim, and J.S. Park, Effects of Al interlayer coating and thermal treatment on electron emission characteristics of carbon nanotubes deposited by electrophoretic method. Nanoscale Res Lett, 2014. 9(1): p. 236.

    QR CODE