簡易檢索 / 詳目顯示

研究生: 趙俊傑
Chao, Chun-Cheih
論文名稱: 建立斑馬魚模型以研究人類感染及免疫相關疾病
Zebrafish models for human infection and immunity diseases
指導教授: 莊永仁
Chuang, Yung-Jen
口試委員: 藍忠昱
Lan, Chung-Yu
石英珠
Shih, Ying-Chu
莊宗顯
Chuang, Tsung-Hsien
林承叡
Lin, Cheng-Jua
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 80
中文關鍵詞: 斑馬魚白色念珠菌發炎性腸症
外文關鍵詞: Zebrafish, Candida albicans, inflammatory bowel diseases
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 模式生物斑馬魚在人類疾病研究上的重要性,在近十年來逐漸被重視,已被使用來誘發許多感染性或發炎性疾病,以瞭解疾病的產生機制,其中包含細菌或是病毒所引起的感染,自體免疫腦脊髓炎以及大腸炎,有些疾病模式更被利用來測試新穎化合物的治療效果,除此之外,更有研究團隊著力於開發斑馬魚自動化影像分析藥物測試平台。進一步整合疾病模式以及藥物篩選平台,將加速藥物研發的過程,並且改進現今藥物開發的方法。
    在這部論文的第一部分,將提及由我們首先建立的斑馬魚真菌感染模式,用以瞭解白色念珠菌(Candida albicans)的致病機制,尤其是菌絲生長。藉著組織學和存活率分析,我們發現白色念珠菌能在魚體中的各個器官上,形成菌落,並且感染斑馬魚,而這樣的感染與否和打入的菌數是有關連的,同時我們也在以白色念珠菌來感染幼魚,並且觀察到免疫細胞和菌交互作用時的即時活體影像,兼以基因表現分析,我們檢測出病原體在過程中,大量表現致病基因,宿主在反應感染時,啓動促進免疫系統和清除病原的基因表現,更進一步使用許多白色念珠菌變異株感染斑馬魚,發現斑馬魚也能用來鑒別不同感染能力的菌株,之後並使用微陣列分析,來觀察時間序列中,真菌病原和斑馬魚宿主分別的基因群表現特徵,期望用於系統生物學之方法分析,來瞭解兩者在感染過程中,有哪些重要且未知的基因參與其中,並且希望發掘新的藥物開發目標,以對抗真菌所造成日益嚴重的醫療問題。
    在第二部分,敘述如何將斑馬魚幼魚浸泡在含有一種化學物質(2,4,6-trinitrobenzenesulfonic acid)的溶液,以誘發發炎性腸症(inflammatory bowel disease),並且改進前人的實驗步驟,用於挑選具免疫調節功能的分子。利用觀察腸道病變和檢測基因表現,我們從選定的色氨酸代謝產物(tryptophan metabolites)中,挑選出具有活化芳香烴受體(aryl hydrocarbon receptor),並且能保護魚體免於腸症之分子。其中挑選出的硫酸吲哚酚(Indoxyl sulfate),原先是被認為是一種造成尿毒症的毒素,但我們的研究卻指出這種毒素俱有生理功能,發現其具有免疫調節的作用,以誘發細胞激素22 (interleukin 22)來保護幼魚免於發炎性腸症的侵襲。
    總結來說,我們延伸了斑馬魚的使用,用以了解真菌感染之機制,並且提供一個簡化的篩藥流程,來挑選具免疫調節以避免腸道過度發炎的化學物質,加上自動化機器平台的使用,期望能在了解真菌感染和炎症產生過程有大進展,增進新穎治療方法的研發,以消弭病人的痛苦。


    The zebrafish model has become one of the best research systems for high throughput drug screening. The importance of zebrafish model in human disease research and for drug discovery and development is well-recognized in the past decade. To understand the pathogenesis of infectious and inflammatory diseases, many zebrafish disease models were established, including bacterial or viral infection diseases, autoimmune encephalomyelitis and colitis. Some of the models have been applied for drug screening to evaluate the therapeutic effect of novel compounds. Besides, the zebrafish model can be integrated with image-based assays, which can transform into an automated drug-evaluating platform. Such integration of disease model and screening platform can greatly advance our understanding of immunity-related pathogenesis and to improve the drug development.
    By applying histological, gene expression and survival assays, we are the first group to establish a fungal infection model with zebrafish to investigate Candida albicans’ virulence, especially its hyphal formation during infection. We demonstrated that C. albicans could colonize and invade zebrafish at multiple anatomical sites and kill the fish in a dose-dependent manner. Moreover, using zebrafish embryos, we monitored C. albicans infection and visualized the interaction between pathogen and host myelomonocytic cells in vivo. Inside zebrafish, we observed the progression of the C. albicans yeast-to-hypha transition by tracking morphogenesis, and we monitored the corresponding genes expression of the pathogen. We then performed time-lapse microarray study to analyze the genes expression patterns in fungal pathogen and zebrafish host simultaneously for systems biology approach analysis, which the abovementioned is the first part of this thesis.
    There are two parts in my thesis and the second part is to present how we modified a published protocol to induce inflammatory bowel diseases (IBD) in zebrafish larva by incubating fish in 2,4,6-trinitrobenzenesulfonic acid (TNBS) contained solution and apply the protocol for drug screening to select immunomodulatory molecules. By incorporating IBD scoring system and genes expression assays, we selected effective candidates from tryptophan metabolites in the activation of aryl hydrocarbon receptor (AhR) signaling to protect fish from IBD and we found the uremic toxic, indoxyl sulfate (IS), possess a physiological function to promote the expression of interleukin 22 to protect fish gut from IBD instead to damaging the physiological homeostasis. This finding proposed the IS can play a role to maintain the immunological balance, which is other than what had been reported as a toxic molecules.
    In conclusion, our findings have expanded the application of zebrafish model to study fungal infection. We also proposed a straightforward way to evaluate novel immunomodulation chemicals for their effects in controlling inflammation in gut. With application of automated robotic platform, we expect to make significant progress in understanding pathogenesis of more infectious and inflammatory diseases, and to develop novel therapy for related patients.

    Abstract I 中文摘要 I English abstract II Abbreviation III Chemical III Specialized Term III Acknowledgement VI Chapter 1 Introduction 1 Conserved immune systems share by zebrafish and higher vertebrates 1 Application of zebrafish model to advance the research in human immunological diseases 3 Drug discovery with zebrafish model 5 Drug metabolisms in zebrafish is similar to mammalian 6 Chapter 2 Material and Methods 9 2.1 Material and Methods for the study of Candida albicans Infection 9 Maintenance of Zebrafish 9 Candida albicans strains and growth conditions 9 Zebrafish survival assay 9 Colony formation assay 10 RNA isolation and quantitative real-time PCR 10 To introduce Candida albicans into fish host 11 Histiology 11 2.2 Material and Methods for the study of IBD 12 Zebrafish Strains. 12 Animal IBD Induction. 12 Estimation of Zebrafish gut structure. 12 RNA Extraction and Real-Time PCR. 13 Chapter 3 Zebrafish as a model host for studying Candida albicans infection 14 3.1 Motivation 14 Emergence of drug resistant fungal pathogen, Candida albicans, reduce the efficiency of current antifungal therapy 14 3.2 Result 16 Zebrafish was infected by non-native fungal pathogen, Candida albicans. 16 Zebrafish embryo model can reveal the infection process in real time 19 Zebrafish model is proper to study morphogenesis-related virulence of Candida albicans 20 Systems biology approach to construct host and C. albicans interaction network 24 3.3 Significant 26 3.4 Discussion 27 The advantages and disadvantages of zebrafish model for studying C. albicans infection 27 Chapter 4 Zebrafish as a model for studying inflammatory bowel disease 29 4.1 Motivation 29 Long-term usage of anti-inflammatory therapy to treat inflammatory bowel diseases cause serious side effect 29 4.2 Result 32 TNBS-induced Zebrafish IBD model can mimic IBD phenotypes observed in mice or human. 32 Zebrafish IBD can be applied for screening novel AhR ligand with therapeutic effect. 35 Identification of gut protective AhR ligands from tryptophan metabolites 37 4.3 Significant 39 4.4 Discussion 40 Gut microflora participates in host gastrointestinal homeostasis through AhR signaling 40 Chapter 5 Perspective 44 To assemble a high-throughput drug screening platform with zebrafish against human inflammatory diseases 44 Chapter 6 Bibliography 47 Chapter 7 Tables 55 Table 1. The applied C. albicans strains in this study 55 Table 2. The sequence of primers used for real-time quantitative PCR for the study of C. albicans infection 56 Table 3. The sequence of primers used for real-time quantitative PCR for the study of IBD 57 Chapter 8 Figures 58 Figure 1. C. albicans kills zebrafish in a dose-dependent manner. 58 Figure 2. Colonization and invasion of C. albicans within zebrafish. 59 Figure 3. C. albicans hyphae-associated gene expression within zebrafish. 60 Figure 4. Progression of C. albicans hyphal formation in zebrafish. 61 Figure 5. C. albicans induces host immune response gene expression. 62 Figure 6. Deficient hyphal formation attenuates C. albicans virulence in zebrafish. 63 Figure 7. The hyphal form of C. albicans was found in dead zebrafish. 64 Figure 8. Hgc1-knockout C. albicans formed only pseudohyphae. 65 Figure 9. Delayed morphological transition of HLC54. 66 Figure 10. C. albicans virulence gene expression profiling in early infection. 67 Figure 11. In vivo visualization of C. albicans in an infected zebrafish embryo. 68 Figure 12. Induction of Acute Inflammatory Bowel Disease in Zebrafish Larva. 69 Figure 13. Gut wall movement is not directly related to IBD formation. 70 Figure 14. FICZ activates AhR signaling to protect zebrafish larva from TNBS-induced IBD. 71 Figure 15. With drug screening platform, gut protective indoxyl sulfate was identified. 72 Chapter 9 Supplement 73 Supplement 1. Flowchart of the construction of the integrated infection intercellular PPI network via database mining and integration. 73 Supplement 2. C. albicans and zebrafish integrated intercellular dynamic PPI network during C. albicans infection of zebrafish. 74 Supplement 3. Experimental microscopy images of the infection process of C. albicans on zebra-fish tissue: infection of zebrafish with C. albicans. 75 Supplement 4. C. albicans proteins with the largest changes in PPI number between the adhesive and hyphal stage networks during infection. 76 Supplement 5. Proteins with the most changes in PPI number between the zebrafish stage 1 and stage 2 networks during infection. 77 Supplement 6. Numbers of PPIs of C. albicans cell surface proteins in the host-pathogen intercellular PPI network. 78 Supplement 7. Important biological processes of the C. albicans invasion mechanism and zebrafish defense mechanism during infection. 79

    1. Murphey RD, Stern HM, Straub CT, Zon LI. A chemical genetic screen for cell cycle inhibitors in zebrafish embryos. Chem Biol Drug Des 2006;68(4):213-9.
    2. Okuda KS, Astin JW, Misa JP, Flores MV, Crosier KE, Crosier PS. lyve1 expression reveals novel lymphatic vessels and new mechanisms for lymphatic vessel development in zebrafish. Development 2012;139(13):2381-91.
    3. Elks PM, van Eeden FJ, Dixon G, Wang X, Reyes-Aldasoro CC, Ingham PW, Whyte MK, Walmsley SR, Renshaw SA. Activation of hypoxia-inducible factor-1alpha (Hif-1alpha) delays inflammation resolution by reducing neutrophil apoptosis and reverse migration in a zebrafish inflammation model. Blood 2011;118(3):712-22.
    4. Bajoghli B, Guo P, Aghaallaei N, Hirano M, Strohmeier C, McCurley N, Bockman DE, Schorpp M, Cooper MD, Boehm T. A thymus candidate in lampreys. Nature 2011;470(7332):90-4.
    5. Kuo ZY, Chuang YJ, Chao CC, Liu FC, Lan CY, Chen BS. Identification of infection- and defense-related genes via a dynamic host-pathogen interaction network using a Candida albicans-zebrafish infection model. J Innate Immun 2013;5(2):137-52.
    6. Meeker ND, Smith AC, Frazer JK, Bradley DF, Rudner LA, Love C, Trede NS. Characterization of the zebrafish T cell receptor beta locus. Immunogenetics 2010;62(1):23-9.
    7. Ellett F, Pase L, Hayman JW, Andrianopoulos A, Lieschke GJ. mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood 2011;117(4):e49-56.
    8. Hess I, Boehm T. Intravital imaging of thymopoiesis reveals dynamic lympho-epithelial interactions. Immunity 2012;36(2):298-309.
    9. Li ZH, Alex D, Siu SO, Chu IK, Renn J, Winkler C, Lou S, Tsui SK, Zhao HY, Yan WR and others. Combined in vivo imaging and omics approaches reveal metabolism of icaritin and its glycosides in zebrafish larvae. Mol Biosyst 2011;7(7):2128-38.
    10. Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. J Nutr 2000;130(8S Suppl):2073S-85S.
    11. Meeker ND, Trede NS. Immunology and zebrafish: spawning new models of human disease. Dev Comp Immunol 2008;32(7):745-57.
    12. Zon LI, Peterson RT. In vivo drug discovery in the zebrafish. Nat Rev Drug Discov 2005;4(1):35-44.
    13. Renshaw SA, Trede NS. A model 450 million years in the making: zebrafish and vertebrate immunity. Dis Model Mech 2012;5(1):38-47.
    14. Carradice D, Lieschke GJ. Zebrafish in hematology: sushi or science? Blood 2008;111(7):3331-42.
    15. Quaife NM, Watson O, Chico TJ. Zebrafish: an emerging model of vascular development and remodelling. Curr Opin Pharmacol 2012;12(5):608-14.
    16. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L and others. The zebrafish reference genome sequence and its relationship to the human genome. Nature 2013;496(7446):498-503.
    17. Sullivan C, Kim CH. Zebrafish as a model for infectious disease and immune function. Fish Shellfish Immunol 2008;25(4):341-50.
    18. Quintana FJ, Iglesias AH, Farez MF, Caccamo M, Burns EJ, Kassam N, Oukka M, Weiner HL. Adaptive autoimmunity and Foxp3-based immunoregulation in zebrafish. PLoS One 2010;5(3):e9478.
    19. Oehlers SH, Flores MV, Okuda KS, Hall CJ, Crosier KE, Crosier PS. A chemical enterocolitis model in zebrafish larvae that is dependent on microbiota and responsive to pharmacological agents. Dev Dyn 2011;240(1):288-98.
    20. Fleming A, Jankowski J, Goldsmith P. In vivo analysis of gut function and disease changes in a zebrafish larvae model of inflammatory bowel disease: a feasibility study. Inflamm Bowel Dis 2010;16(7):1162-72.
    21. Davis JM, Ramakrishnan L. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 2009;136(1):37-49.
    22. Takaki K, Cosma CL, Troll MA, Ramakrishnan L. An in vivo platform for rapid high-throughput antitubercular drug discovery. Cell Rep 2012;2(1):175-84.
    23. McCollum CW, Ducharme NA, Bondesson M, Gustafsson JA. Developmental toxicity screening in zebrafish. Birth Defects Res C Embryo Today 2011;93(2):67-114.
    24. Walle T, Otake Y, Walle UK, Wilson FA. Quercetin glucosides are completely hydrolyzed in ileostomy patients before absorption. J Nutr 2000;130(11):2658-61.
    25. Walle T. Absorption and metabolism of flavonoids. Free Radic Biol Med 2004;36(7):829-37.
    26. Lam SH, Wu YL, Vega VB, Miller LD, Spitsbergen J, Tong Y, Zhan H, Govindarajan KR, Lee S, Mathavan S and others. Conservation of gene expression signatures between zebrafish and human liver tumors and tumor progression. Nat Biotechnol 2006;24(1):73-5.
    27. Westerfield M. The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). Univ. of Oregon Press; 2000.
    28. Hall C, Flores MV, Storm T, Crosier K, Crosier P. The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish. BMC Dev Biol 2007;7:42.
    29. Levraud JP, Colucci-Guyon E, Redd MJ, Lutfalla G, Herbomel P. In vivo analysis of zebrafish innate immunity. Methods Mol Biol 2008;415:337-63.
    30. Langenau DM, Ferrando AA, Traver D, Kutok JL, Hezel JP, Kanki JP, Zon LI, Look AT, Trede NS. In vivo tracking of T cell development, ablation, and engraftment in transgenic zebrafish. Proc Natl Acad Sci U S A 2004;101(19):7369-74.
    31. Renshaw SA, Loynes CA, Trushell DM, Elworthy S, Ingham PW, Whyte MK. A transgenic zebrafish model of neutrophilic inflammation. Blood 2006;108(13):3976-8.
    32. Westerfield M. The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). . Univ. of Oregon Press; 2000.
    33. Huang WC, Hsieh YS, Chen IH, Wang CH, Chang HW, Yang CC, Ku TH, Yeh SR, Chuang YJ. Combined use of MS-222 (tricaine) and isoflurane extends anesthesia time and minimizes cardiac rhythm side effects in adult zebrafish. Zebrafish 2010;7(3):297-304.
    34. Odds FC. Candida and candidosis: a review and bibliography. London: Bailliere Tindal; 1988.
    35. Cannon RD, Lamping E, Holmes AR, Niimi K, Tanabe K, Niimi M, Monk BC. Candida albicans drug resistance another way to cope with stress. Microbiology 2007;153(Pt 10):3211-7.
    36. Berman J, Sudbery PE. Candida albicans: a molecular revolution built on lessons from budding yeast. Nat Rev Genet 2002;3(12):918-30.
    37. Pukkila-Worley R, Peleg AY, Tampakakis E, Mylonakis E. Candida albicans hyphal formation and virulence assessed using a Caenorhabditis elegans infection model. Eukaryot Cell 2009;8(11):1750-8.
    38. Cotter G, Doyle S, Kavanagh K. Development of an insect model for the in vivo pathogenicity testing of yeasts. FEMS Immunol Med Microbiol 2000;27(2):163-9.
    39. Alarco AM, Marcil A, Chen J, Suter B, Thomas D, Whiteway M. Immune-deficient Drosophila melanogaster: a model for the innate immune response to human fungal pathogens. J Immunol 2004;172(9):5622-8.
    40. Mylonakis E, Casadevall A, Ausubel FM. Exploiting amoeboid and non-vertebrate animal model systems to study the virulence of human pathogenic fungi. PLoS Pathog 2007;3(7):e101.
    41. Chamilos G, Lionakis MS, Lewis RE, Kontoyiannis DP. Role of mini-host models in the study of medically important fungi. Lancet Infect Dis 2007;7(1):42-55.
    42. Chamilos G, Lionakis MS, Lewis RE, Lopez-Ribot JL, Saville SP, Albert ND, Halder G, Kontoyiannis DP. Drosophila melanogaster as a facile model for large-scale studies of virulence mechanisms and antifungal drug efficacy in Candida species. J Infect Dis 2006;193(7):1014-22.
    43. Chamilos G, Nobile CJ, Bruno VM, Lewis RE, Mitchell AP, Kontoyiannis DP. Candida albicans Cas5, a regulator of cell wall integrity, is required for virulence in murine and toll mutant fly models. J Infect Dis 2009;200(1):152-7.
    44. Breger J, Fuchs BB, Aperis G, Moy TI, Ausubel FM, Mylonakis E. Antifungal chemical compounds identified using a C. elegans pathogenicity assay. PLoS Pathog 2007;3(2):e18.
    45. Whiteway M, Oberholzer U. Candida morphogenesis and host-pathogen interactions. Curr Opin Microbiol 2004;7(4):350-7.
    46. Lo HJ, Kohler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR. Nonfilamentous C. albicans mutants are avirulent. Cell 1997;90(5):939-49.
    47. Kadosh D, Johnson AD. Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis. Mol Biol Cell 2005;16(6):2903-12.
    48. Nantel A, Dignard D, Bachewich C, Harcus D, Marcil A, Bouin AP, Sensen CW, Hogues H, van het Hoog M, Gordon P and others. Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Mol Biol Cell 2002;13(10):3452-65.
    49. Netea MG, Brown GD, Kullberg BJ, Gow NA. An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol 2008;6(1):67-78.
    50. Thewes S, Kretschmar M, Park H, Schaller M, Filler SG, Hube B. In vivo and ex vivo comparative transcriptional profiling of invasive and non-invasive Candida albicans isolates identifies genes associated with tissue invasion. Mol Microbiol 2007;63(6):1606-28.
    51. Brothers KM, Newman ZR, Wheeler RT. Live imaging of disseminated candidiasis in zebrafish reveals role of phagocyte oxidase in limiting filamentous growth. Eukaryot Cell 2011;10(7):932-44.
    52. Jimenez-Lopez C, Collette JR, Brothers KM, Shepardson KM, Cramer RA, Wheeler RT, Lorenz MC. Candida albicans induces arginine biosynthetic genes in response to host-derived reactive oxygen species. Eukaryot Cell 2013;12(1):91-100.
    53. Naglik JR, Challacombe SJ, Hube B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 2003;67(3):400-28, table of contents.
    54. Karkowska-Kuleta J, Rapala-Kozik M, Kozik A. Fungi pathogenic to humans: molecular bases of virulence of Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. Acta Biochim Pol 2009;56(2):211-24.
    55. Zheng X, Wang Y. Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. EMBO J 2004;23(8):1845-56.
    56. Tebarth B, Doedt T, Krishnamurthy S, Weide M, Monterola F, Dominguez A, Ernst JF. Adaptation of the Efg1p morphogenetic pathway in Candida albicans by negative autoregulation and PKA-dependent repression of the EFG1 gene. J Mol Biol 2003;329(5):949-62.
    57. Chen CG, Yang YL, Cheng HH, Su CL, Huang SF, Chen CT, Liu YT, Su IJ, Lo HJ. Non-lethal Candida albicans cph1/cph1 efg1/efg1 transcription factor mutant establishing restricted zone of infection in a mouse model of systemic infection. Int J Immunopathol Pharmacol 2006;19(3):561-5.
    58. Riggle PJ, Andrutis KA, Chen X, Tzipori SR, Kumamoto CA. Invasive lesions containing filamentous forms produced by a Candida albicans mutant that is defective in filamentous growth in culture. Infect Immun 1999;67(7):3649-52.
    59. Muhlschlegel FA, Fonzi WA. PHR2 of Candida albicans encodes a functional homolog of the pH-regulated gene PHR1 with an inverted pattern of pH-dependent expression. Mol Cell Biol 1997;17(10):5960-7.
    60. Navarro-Garcia F, Sanchez M, Nombela C, Pla J. Virulence genes in the pathogenic yeast Candida albicans. FEMS Microbiol Rev 2001;25(2):245-68.
    61. Kretschmar M, Hube B, Bertsch T, Sanglard D, Merker R, Schroder M, Hof H, Nichterlein T. Germ tubes and proteinase activity contribute to virulence of Candida albicans in murine peritonitis. Infect Immun 1999;67(12):6637-42.
    62. Grassme H, Jendrossek V, Gulbins E. Molecular mechanisms of bacteria induced apoptosis. Apoptosis 2001;6(6):441-5.
    63. Danilova N, Steiner LA. B cells develop in the zebrafish pancreas. Proc Natl Acad Sci U S A 2002;99(21):13711-6.
    64. Danilova N, Hohman VS, Sacher F, Ota T, Willett CE, Steiner LA. T cells and the thymus in developing zebrafish. Dev Comp Immunol 2004;28(7-8):755-67.
    65. Herbomel P, Thisse B, Thisse C. Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development 1999;126(17):3735-45.
    66. Lee KL, Buckley HR, Campbell CC. An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida albicans. Sabouraudia 1975;13(2):148-53.
    67. White RM, Sessa A, Burke C, Bowman T, LeBlanc J, Ceol C, Bourque C, Dovey M, Goessling W, Burns CE and others. Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2008;2(2):183-9.
    68. Sands BE. Therapy of inflammatory bowel disease. Gastroenterology 2000;118(2 Suppl 1):S68-82.
    69. Hanauer SB, Feagan BG, Lichtenstein GR, Mayer LF, Schreiber S, Colombel JF, Rachmilewitz D, Wolf DC, Olson A, Bao W and others. Maintenance infliximab for Crohn's disease: the ACCENT I randomised trial. Lancet 2002;359(9317):1541-9.
    70. Pineton de Chambrun GP, Sandborn WJ. IBD in 2011: Advances in IBD management--towards a tailored approach. Nat Rev Gastroenterol Hepatol 2012;9(2):70-2.
    71. Pineton de Chambrun G, Peyrin-Biroulet L, Lemann M, Colombel JF. Clinical implications of mucosal healing for the management of IBD. Nat Rev Gastroenterol Hepatol 2010;7(1):15-29.
    72. Monteleone I, Rizzo A, Sarra M, Sica G, Sileri P, Biancone L, MacDonald TT, Pallone F, Monteleone G. Aryl hydrocarbon receptor-induced signals up-regulate IL-22 production and inhibit inflammation in the gastrointestinal tract. Gastroenterology 2011;141(1):237-48, 248 e1.
    73. Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, Bettelli E, Caccamo M, Oukka M, Weiner HL. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 2008;453(7191):65-71.
    74. Stone TW, Stoy N, Darlington LG. An expanding range of targets for kynurenine metabolites of tryptophan. Trends Pharmacol Sci 2013;34(2):136-43.
    75. DiNatale BC, Murray IA, Schroeder JC, Flaveny CA, Lahoti TS, Laurenzana EM, Omiecinski CJ, Perdew GH. Kynurenic acid is a potent endogenous aryl hydrocarbon receptor ligand that synergistically induces interleukin-6 in the presence of inflammatory signaling. Toxicol Sci 2010;115(1):89-97.
    76. Mezrich JD, Fechner JH, Zhang X, Johnson BP, Burlingham WJ, Bradfield CA. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol 2010;185(6):3190-8.
    77. Monteleone I, Pallone F, Monteleone G. Interleukin-23 and Th17 cells in the control of gut inflammation. Mediators Inflamm 2009;2009:297645.
    78. Fina D, Sarra M, Fantini MC, Rizzo A, Caruso R, Caprioli F, Stolfi C, Cardolini I, Dottori M, Boirivant M and others. Regulation of gut inflammation and th17 cell response by interleukin-21. Gastroenterology 2008;134(4):1038-48.
    79. Oehlers SH, Flores MV, Hall CJ, Crosier KE, Crosier PS. Retinoic acid suppresses intestinal mucus production and exacerbates experimental enterocolitis. Dis Model Mech 2012;5(4):457-67.
    80. Tesmer LA, Lundy SK, Sarkar S, Fox DA. Th17 cells in human disease. Immunol Rev 2008;223:87-113.
    81. Kolios G, Valatas V, Ward SG. Nitric oxide in inflammatory bowel disease: a universal messenger in an unsolved puzzle. Immunology 2004;113(4):427-37.
    82. Naito Y, Takagi T, Yoshikawa T. Neutrophil-dependent oxidative stress in ulcerative colitis. J Clin Biochem Nutr 2007;41(1):18-26.
    83. van der Goot AT, Nollen EA. Tryptophan metabolism: entering the field of aging and age-related pathologies. Trends Mol Med 2013.
    84. Stone TW, Darlington LG. Endogenous kynurenines as targets for drug discovery and development. Nat Rev Drug Discov 2002;1(8):609-20.
    85. Vikstrom Bergander L, Cai W, Klocke B, Seifert M, Pongratz I. Tryptamine serves as a proligand of the AhR transcriptional pathway whose activation is dependent of monoamine oxidases. Mol Endocrinol 2012;26(9):1542-51.
    86. Watanabe I, Tatebe J, Namba S, Koizumi M, Yamazaki J, Morita T. Activation of aryl hydrocarbon receptor mediates indoxyl sulfate-induced monocyte chemoattractant protein-1 expression in human umbilical vein endothelial cells. Circ J 2012;77(1):224-30.
    87. Manocha M, Khan WI. Serotonin and GI Disorders: An Update on Clinical and Experimental Studies. Clin Transl Gastroenterol 2012;3:e13.
    88. Singh NP, Singh UP, Singh B, Price RL, Nagarkatti M, Nagarkatti PS. Activation of aryl hydrocarbon receptor (AhR) leads to reciprocal epigenetic regulation of FoxP3 and IL-17 expression and amelioration of experimental colitis. PLoS One 2011;6(8):e23522.
    89. Niwa T. Uremic toxicity of indoxyl sulfate. Nagoya J Med Sci 2010;72(1-2):1-11.
    90. Individual metabolic patterns and human disease: an exploratory study utilizing predominantly paper chromatographic methods, from the Biochemical Institute and the Dept. of Chemistry, the University of Texas, and the Clayton Foundation for Research, Austin. Austin,1951. 205 p. p.
    91. Clayton PT, Bridges NA, Atherton DJ, Milla PJ, Malone M, Bender DA. Pellagra with colitis due to a defect in tryptophan metabolism. Eur J Pediatr 1991;150(7):498-502.
    92. Forrest CM, Gould SR, Darlington LG, Stone TW. Levels of purine, kynurenine and lipid peroxidation products in patients with inflammatory bowel disease. Adv Exp Med Biol 2003;527:395-400.
    93. Schrocksnadel K, Wirleitner B, Winkler C, Fuchs D. Monitoring tryptophan metabolism in chronic immune activation. Clin Chim Acta 2006;364(1-2):82-90.
    94. Keszthelyi D, Troost FJ, Masclee AA. Understanding the role of tryptophan and serotonin metabolism in gastrointestinal function. Neurogastroenterol Motil 2009;21(12):1239-49.
    95. McBerry C, Gonzalez RM, Shryock N, Dias A, Aliberti J. SOCS2-induced proteasome-dependent TRAF6 degradation: a common anti-inflammatory pathway for control of innate immune responses. PLoS One 2012;7(6):e38384.
    96. Lin HM, Barnett MP, Roy NC, Joyce NI, Zhu S, Armstrong K, Helsby NA, Ferguson LR, Rowan DD. Metabolomic analysis identifies inflammatory and noninflammatory metabolic effects of genetic modification in a mouse model of Crohn's disease. J Proteome Res 2010;9(4):1965-75.
    97. Taleb O, Maammar M, Brumaru D, Bourguignon JJ, Schmitt M, Klein C, Kemmel V, Maitre M, Mensah-Nyagan AG. Xanthurenic acid binds to neuronal G-protein-coupled receptors that secondarily activate cationic channels in the cell line NCB-20. PLoS One 2012;7(11):e48553.
    98. Magro F, Vieira-Coelho MA, Fraga S, Serrao MP, Veloso FT, Ribeiro T, Soares-da-Silva P. Impaired synthesis or cellular storage of norepinephrine, dopamine, and 5-hydroxytryptamine in human inflammatory bowel disease. Dig Dis Sci 2002;47(1):216-24.
    99. Ghia JE, Li N, Wang H, Collins M, Deng Y, El-Sharkawy RT, Cote F, Mallet J, Khan WI. Serotonin has a key role in pathogenesis of experimental colitis. Gastroenterology 2009;137(5):1649-60.
    100. Margolis KG, Stevanovic KD, Yang QM, Li Z, Mazo R, Gershon MD. An Inhibitor of Tryptophan Hydroxylase Successfully Ameliorates TNBS-Induced Colitis. Gastroenterology 2011;140(5):S-478.
    101. Kim JJ, Bridle BW, Ghia JE, Wang H, Syed SN, Manocha MM, Rengasamy P, Shajib MS, Wan Y, Hedlund PB and others. Targeted Inhibition of Serotonin Type 7 (5-HT7) Receptor Function Modulates Immune Responses and Reduces the Severity of Intestinal Inflammation. J Immunol 2013;190(9):4795-804.
    102. Hwang SJ, Hwang YJ, Yun MO, Kim JH, Oh GS, Park JH. Indoxyl 3-sulfate stimulates Th17 differentiation enhancing phosphorylation of c-Src and STAT3 to worsen experimental autoimmune encephalomyelitis. Toxicol Lett 2013.
    103. Ranganathan P, Jayakumar C, Santhakumar M, Ramesh G. Netrin-1 regulates colon-kidney cross talk through suppression of IL-6 function in a mouse model of DSS-colitis. Am J Physiol Renal Physiol 2013;304(9):F1187-97.
    104. O'Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep 2006;7(7):688-93.
    105. Rawls JF, Mahowald MA, Ley RE, Gordon JI. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 2006;127(2):423-33.
    106. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A 2009;106(10):3698-703.
    107. Vogt A, Cholewinski A, Shen X, Nelson SG, Lazo JS, Tsang M, Hukriede NA. Automated image-based phenotypic analysis in zebrafish embryos. Dev Dyn 2009;238(3):656-63.
    108. Kaufmann A, Mickoleit M, Weber M, Huisken J. Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope. Development 2012;139(17):3242-7.
    109. Bischel LL, Mader BR, Green JM, Huttenlocher A, Beebe DJ. Zebrafish Entrapment By Restriction Array (ZEBRA) device: a low-cost, agarose-free zebrafish mounting technique for automated imaging. Lab Chip 2013;13(9):1732-6.
    110. Pardo-Martin C, Chang TY, Koo BK, Gilleland CL, Wasserman SC, Yanik MF. High-throughput in vivo vertebrate screening. Nat Methods 2010;7(8):634-6.
    111. Chang TY, Pardo-Martin C, Allalou A, Wahlby C, Yanik MF. Fully automated cellular-resolution vertebrate screening platform with parallel animal processing. Lab Chip 2012;12(4):711-6.
    112. Gillum AM, Tsay EY, Kirsch DR. Isolation of the Candida albicans gene for orotidine-5'-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 1984;198(1):179-82.
    113. Balish E, Phillips AW. Growth, morphogenesis, and virulence of Candida albicans after oral inoculation in the germ-free and conventional chick. J Bacteriol 1966;91(5):1736-43.
    114. Phillips AW, Balish E. Growth and invasiveness of Candida albicans in the germ-free and conventional mouse after oral challenge. Appl Microbiol 1966;14(5):737-41.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE