簡易檢索 / 詳目顯示

研究生: 林聖鈞
Lin, Sheng-Jun
論文名稱: 以物理和化學建模評估無星雲核的主要形成途徑
Assessing the Dominant Formation Scenario of Starless Cores via Physical and Chemical Modeling
指導教授: 賴詩萍
Lai, Shih-Ping
口試委員: Pagani, Laurent
Pagani, Laurent
呂聖元
Liu, Sheng-Yuan
平野尚美
Hirano, Naomi
何英宏
Harsono, Daniel
顏士韋
Yen, Hsi-Wei
學位類別: 博士
Doctor
系所名稱: 理學院 - 天文研究所
Institute of Astronomy
論文出版年: 2022
畢業學年度: 111
語文別: 英文
論文頁數: 126
中文關鍵詞: 天文化學星際介質(L1512)星際介質(L1498)星際磁場偏極恆星形成
外文關鍵詞: astrochemistry, ISM: abundances, ISM: individual objects: L 1512, ISM: individual objects: L 1498, ISM: magnetic fields
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無星雲核(starless core)是孕育新生恆星和行星的場所。儘管我們已知重力塌縮在無星雲核形成的過程中扮演重要角色,對於其細節,尤其是形成所需時間,尚不完全了解。不同動力學理論所預期的無星雲核形成模型在形成過程的時間尺度有所不同,甚至可以相差至十倍。藉由與時間相依的化學分析法,我們可以測量歷經的塌縮時間長短來區別不同的無星雲核形成模型。在本研究中,我以氘化程度推估兩個無星雲核的塌縮時間:L1512以及L1498。我藉由觀測資料對天體的內部氘化程度進行化學建模,而這些觀測資料包含用以測定消光程度的紅外線波段觀測以及對於分子譜線進行非平衡態輻射遞移計算的電波波段資料。我們發現L1512的年紀較老(塌縮時間>1.43百萬年)而L1498則較年輕(塌縮時間>0.35百萬年,與典型的自由下墜時間尺度相當)。由此推論L1512的磁場可能較L1498強,而磁場影響下的雙極性擴散有可能使L1512塌縮的速度減緩或甚至使其停止於目前的狀態。由L1512的850微米波段偏振觀測,我們以戴維斯—錢卓塞卡—費米(Davis–Chandrasekhar–Fermi)方法得出其在天球平面的磁場強度為18$
    m$5微高斯。然而單由此磁場分量並無法使L1512免於重力塌縮,且這與L1512有震盪的外層以及沒有內流運動的內核觀測不符。因此我們由維理(Virial)分析法,推算出要能支持L1512本身的重力所需的總磁場強度為32微高斯,即視線方向的磁場分量強度為27微高斯。


    Starless cores are the potential sites for star and planet formation.
    Although we know gravitational collapse plays the main role during the core formation, the details, in particular the timescale, are not yet well understood. The collapsing timescale suggested by different dynamical scenarios could vary by more than a factor of ten. With time-dependent chemical analysis, measuring the collapsing timescale of the cores allows us to distinguish between dynamical theories of core formation. In this thesis, I measure the collapsing timescale (t_coll) of two nearby low-mass starless cores, L1512 and L1498, using deuterium fractionation as a chemical clock. I perform chemical modeling of the deuteration profiles across the two targets based on dust extinction measurements from near-infrared observations and non-local thermal equilibrium radiative transfer with radio observations including the multi-transition of N2H+, N2D+, DCO+, and H2D+ (110-111). I find that L1512 is chemically evolved (t_coll>~ 1.43 Ma) while L1498 is chemically young (t_coll>~ 0.35 Ma, comparable to the typical free-fall time). This would imply that the magnetic field (B-field) is stronger in L1512 than in L1498. Consequently, ambipolar diffusion may have slowed down the contraction of L1512 or even halted it to the resent state. I further conducted the 850 um polarization observations toward L1512 and perform the Davis–Chandrasekhar–Fermi analysis to derive a lane-of-sky B-field strength of 18$
    m$5 uG. Alone with this plane-of-sky B-field strength, L1512 can not be sufficiently supported, which however is not consistent with the presence of an oscillating envelope and the absence of infall motion in the core. With the Virial analysis, I estimate that the total B-field strength of 32 uG (a line-of-sight component of 27 uG) is needed to support L1512 against gravity.

    Abstract (Chinese) I Abstract II Acknowledgements III Contents V List of Figures IX List of Tables XII 1 Introduction 1 1.1 Starless Core Formation: Background . . . . . . . . . . . . . . . . . . 1 1.2 Starless Core Formation: Chemical Modeling . . . . . . . . . . . . . . 2 2 Physical and chemical modeling of the starless core L1512 7 2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Observations and data reduction . . . . . . . . . . . . . . . . . . . . . 12 2.3.1 IRAM 30 m observations . . . . . . . . . . . . . . . . . . . . . 13 2.3.2 JCMT observations . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.3 GBT observations . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.4 CFHT observations . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.5 Spitzer observations . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4.1 Continuum maps . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4.2 Molecular emission lines . . . . . . . . . . . . . . . . . . . . . 18 2.4.3 Velocity structure . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.5.1 Visual extinction . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.5.2 Density profile . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.5.3 Radiative transfer applied to the onion-shell model . . . . . . . 27 2.5.4 Time-dependent chemical model . . . . . . . . . . . . . . . . . 31 2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.6.1 Density and kinetic temperature . . . . . . . . . . . . . . . . . 35 2.6.2 Cation abundance profiles . . . . . . . . . . . . . . . . . . . . 36 2.6.3 CO and N2 depletion . . . . . . . . . . . . . . . . . . . . . . . 38 2.6.4 Lifetime scale . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 A Spectral line observations . . . . . . . . . . . . . . . . . . . . . . . . . 44 B Best-fit physical and abundance profiles . . . . . . . . . . . . . . . . . 46 3 Deuterium fractionation of the starless core L1498 48 3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.3 Observations and data reduction . . . . . . . . . . . . . . . . . . . . . 54 3.3.1 Spectral observations . . . . . . . . . . . . . . . . . . . . . . . 54 3.3.2 Continuum observations . . . . . . . . . . . . . . . . . . . . . 57 3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.4.1 Continuum maps . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.4.2 Molecular emission lines . . . . . . . . . . . . . . . . . . . . . 59 3.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.5.1 Onion-like physical model . . . . . . . . . . . . . . . . . . . . 61 3.5.2 Time-dependent chemical model . . . . . . . . . . . . . . . . . 64 3.5.3 Visual extinction . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.6.1 Density and kinetic temperature . . . . . . . . . . . . . . . . . 70 3.6.2 Cation abundance profiles . . . . . . . . . . . . . . . . . . . . 73 3.6.3 CO and N2 abundance profiles . . . . . . . . . . . . . . . . . . 75 3.6.4 Deuterium fractionation and lifetime scale of L1498 . . . . . . 77 3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 A Spectral line observations . . . . . . . . . . . . . . . . . . . . . . . . . 81 B Asymmetric onion-like model . . . . . . . . . . . . . . . . . . . . . . 82 C Best-fit physical and abundance profiles . . . . . . . . . . . . . . . . . 84 4 Magnetic fields of the starless core L1512 86 4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.3 Observations and data reduction . . . . . . . . . . . . . . . . . . . . . 90 4.3.1 James Clerk Maxwell Telescope (JCMT) observations . . . . . 90 4.3.2 Mimir polarization observations . . . . . . . . . . . . . . . . . 96 4.3.3 Other observations . . . . . . . . . . . . . . . . . . . . . . . . 96 4.4 Results and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.4.1 B-field morphology . . . . . . . . . . . . . . . . . . . . . . . . 96 4.4.2 Davis–Chandrasekhar–Fermi analysis . . . . . . . . . . . . . . 99 4.4.3 Grain alignment . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 A Virial analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5 Summary 117 Bibliography 119

    Aikawa, Y., Herbst, E., Roberts, H., & Caselli, P. 2005, ApJ, 620, 330
    Aikawa, Y., Ohashi, N., & Herbst, E. 2003, ApJ, 593, 906
    Aikawa, Y., Ohashi, N., Inutsuka, S.-i., Herbst, E., & Takakuwa, S. 2001, ApJ, 552, 639
    Alves, F. O., Frau, P., Girart, J. M., et al. 2014, A&A, 569, L1
    Alves, F. O., Frau, P., Girart, J. M., et al. 2015, On the radiation driven alignment of dust grains: Detection of the polarization hole in a starless core (Corrigendum), Astronomy & Astrophysics, Volume 574, id.C4, 1 pp.
    Andersson, B. G., Lazarian, A., & Vaillancourt, J. E. 2015, ARA&A, 53, 501
    Ascenso, J., Lada, C. J., Alves, J. F., Rom ́an-Z ́u ̃niga, C. G., & Lombardi, M. 2013, A&A, 549, A135
    Bacmann, A., Lefloch, B., Ceccarelli, C., et al. 2002, A&A, 389, L6
    Basu, S. 2000, ApJ, 540, L103
    Beichman, C. A., Myers, P. C., Emerson, J. P., et al. 1986, ApJ, 307, 337
    Bergin, E. A., Alves, J., Huard, T., & Lada, C. J. 2002, ApJ, 570, L101
    Bergin, E. A. & Tafalla, M. 2007, ARA&A, 45, 339
    Bernes, C. 1979, A&A, 73, 67
    Bisschop, S. E., Fraser, H. J., ̈Oberg, K. I., van Dishoeck, E. F., & Schlemmer, S. 2006, A&A, 449, 1297
    Bohlin, R. C., Savage, B. D., & Drake, J. F. 1978, ApJ, 224, 132
    Bovino, S., Ferrada-Chamorro, S., Lupi, A., et al. 2019, ApJ, 887, 224
    Bovino, S., Lupi, A., Giannetti, A., et al. 2021, A&A, 654, A34
    Buckle, J. V., Hills, R. E., Smith, H., et al. 2009, MNRAS, 399, 1026
    Cambr ́esy, L., Rho, J., Marshall, D. J., & Reach, W. T. 2011, A&A, 527, A141
    Caselli, P., Benson, P. J., Myers, P. C., & Tafalla, M. 2002, ApJ, 572, 238
    Caselli, P., Myers, P. C., & Thaddeus, P. 1995, ApJ, 455, L77
    Caselli, P., Vastel, C., Ceccarelli, C., et al. 2008, A&A, 492, 703
    Caselli, P., Walmsley, C. M., Tafalla, M., Dore, L., & Myers, P. C. 1999, ApJ, 523, L165
    Ceccarelli, C., Caselli, P., Bockel ́ee-Morvan, D., et al. 2014, in Protostars and Planets VI, ed. H. Beuther, R. S. Klessen, C. P. Dullemond, & T. Henning, 859
    Chandrasekhar, S. & Fermi, E. 1953, ApJ, 118, 116
    Chapin, E. L., Berry, D. S., Gibb, A. G., et al. 2013, MNRAS, 430, 2545
    Chapman, N. L., Davidson, J. A., Goldsmith, P. F., et al. 2013, ApJ, 770, 151
    Ching, T.-C., Lai, S.-P., Zhang, Q., et al. 2017, ApJ, 838, 121
    Clemens, D. P., Sarcia, D., Grabau, A., et al. 2007, PASP, 119, 1385
    Clemens, D. P., Tassis, K., & Goldsmith, P. F. 2016, ApJ, 833, 176
    Cox, P., Walmsley, C. M., & Guesten, R. 1989, A&A, 209, 382
    Crabtree, K. N., Indriolo, N., Kreckel, H., Tom, B. A., & McCall, B. J. 2011, ApJ, 729, 15
    Crapsi, A., Caselli, P., Walmsley, C. M., et al. 2005, ApJ, 619, 379
    Crutcher, R. M., Nutter, D. J., Ward-Thompson, D., & Kirk, J. M. 2004, ApJ, 600, 279
    Davis, Leverett, J. & Greenstein, J. L. 1951, ApJ, 114, 206
    Dempsey, J. T., Friberg, P., Jenness, T., et al. 2013, MNRAS, 430, 2534
    di Francesco, J., Evans, N. J., I., Caselli, P., et al. 2007, in Protostars and Planets V, ed.
    B. Reipurth, D. Jewitt, & K. Keil, 17
    Dolginov, A. Z. & Mitrofanov, I. G. 1976, Ap&SS, 43, 291
    Enoch, M. L., Evans, Neal J., I., Sargent, A. I., et al. 2008, ApJ, 684, 1240
    Eswaraiah, C., Li, D., Furuya, R. S., et al. 2021, ApJ, 912, L27
    Falgarone, E., Panis, J.-F., Heithausen, A., et al. 1998, A&A, 331, 669
    Falgarone, E., Pety, J., & Phillips, T. G. 2001, ApJ, 555, 178
    Federrath, C. & Klessen, R. S. 2012, ApJ, 761, 156
    Flower, D. R., Pineau des Forˆets, G., & Walmsley, C. M. 2004, A&A, 427, 887
    Flower, D. R., Pineau Des Forˆets, G., & Walmsley, C. M. 2005, A&A, 436, 933
    Flower, D. R., Pineau Des Forˆets, G., & Walmsley, C. M. 2006, A&A, 449, 621
    Fontani, F., Busquet, G., Palau, A., et al. 2015, A&A, 575, A87
    Fontani, F., Caselli, P., Crapsi, A., et al. 2006, A&A, 460, 709
    Ford, A. B. & Shirley, Y. L. 2011, ApJ, 728, 144
    Foster, J. B. & Goodman, A. A. 2006, ApJ, 636, L105
    Frerking, M. A., Langer, W. D., & Wilson, R. W. 1982, ApJ, 262, 590
    Friberg, P., Bastien, P., Berry, D., et al. 2016, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9914, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII, ed. W. S. Holland & J. Zmuidzinas, 991403
    Fuller, G. A. & Myers, P. C. 1993, ApJ, 418, 273
    Giannetti, A., Bovino, S., Caselli, P., et al. 2019, A&A, 621, L7
    Girart, J. M., Beltr ́an, M. T., Zhang, Q., Rao, R., & Estalella, R. 2009, Science, 324, 1408
    Girart, J. M., Rao, R., & Marrone, D. P. 2006, Science, 313, 812
    Goldsmith, P. F. 2001, ApJ, 557, 736
    Hartmann, L., Ballesteros-Paredes, J., & Bergin, E. A. 2001, ApJ, 562, 852
    Heitsch, F., Zweibel, E. G., Mac Low, M.-M., Li, P., & Norman, M. L. 2001, ApJ, 561, 800
    Holdship, J., Viti, S., Jim ́enez-Serra, I., Makrymallis, A., & Priestley, F. 2017, AJ, 154, 38
    Holland, W. S., Bintley, D., Chapin, E. L., et al. 2013, MNRAS, 430, 2513
    Honvault, P., Jorfi, M., Gonz ́alez-Lezana, T., Faure, A., & Pagani, L. 2011, Phys. Rev. Lett., 107, 023201
    Honvault, P., Jorfi, M., Gonz ́alez-Lezana, T., Faure, A., & Pagani, L. 2012, Phys. Rev. Lett., 108, 109903
    Hsieh, C.-h., Hu, Y., Lai, S.-P., et al. 2019, ApJ, 873, 16
    Hugo, E., Asvany, O., & Schlemmer, S. 2009, Journal of Chemical Physics, 130, 164302
    Hull, C. L. H., Plambeck, R. L., Bolatto, A. D., et al. 2013, ApJ, 768, 159
    Jim ́enez-Serra, I., Vasyunin, A. I., Spezzano, S., et al. 2021, ApJ, 917, 44
    Jones, T. J., Bagley, M., Krejny, M., Andersson, B. G., & Bastien, P. 2015, AJ, 149, 31
    Juvela, M., Pelkonen, V.-M., Padoan, P., & Mattila, K. 2006, A&A, 457, 877
    Kandori, R., Tamura, M., Saito, M., et al. 2020a, PASJ, 72, 8
    Kandori, R., Tamura, M., Saito, M., et al. 2020b, ApJ, 890, 14
    Kandori, R., Tamura, M., Tomisaka, K., et al. 2017, ApJ, 848, 110
    Kandori, R., Tomisaka, K., Saito, M., et al. 2020c, ApJ, 888, 120
    Karoly, J., Soam, A., Andersson, B. G., et al. 2020, ApJ, 900, 181
    Keto, E. & Caselli, P. 2008, ApJ, 683, 238
    Khersonkii, V. K., Varshalovich, D. A., & Opendak, M. G. 1987, Soviet Ast., 31, 274
    Kim, G., Lee, C. W., Gopinathan, M., Jeong, W.-S., & Kim, M.-R. 2016, ApJ, 824, 85
    Kirk, J. M., Ward-Thompson, D., & Andr ́e, P. 2005, MNRAS, 360, 1506
    Kirk, J. M., Ward-Thompson, D., & Crutcher, R. M. 2006, MNRAS, 369, 1445
    Kong, S., Caselli, P., Tan, J. C., Wakelam, V., & Sipil ̈a, O. 2015, ApJ, 804, 98
    Kong, S., Tan, J. C., Caselli, P., et al. 2016, ApJ, 821, 94
    K ̈onyves, V., Andr ́e, P., Men’shchikov, A., et al. 2015, A&A, 584, A91
    K ̈ortgen, B., Bovino, S., Schleicher, D. R. G., Giannetti, A., & Banerjee, R. 2017, MNRAS, 469, 2602
    K ̈ortgen, B., Bovino, S., Schleicher, D. R. G., et al. 2018, MNRAS, 478, 95
    Kuiper, T. B. H., Langer, W. D., & Velusamy, T. 1996, ApJ, 468, 761
    Kutner, M. L. & Ulich, B. L. 1981, ApJ, 250, 341
    Lackington, M., Fuller, G. A., Pineda, J. E., et al. 2016, MNRAS, 455, 806
    Lai, S.-P. & Crutcher, R. M. 2000, ApJS, 128, 271
    Langer, W. D. & Willacy, K. 2001, ApJ, 557, 714
    Launhardt, R., Stutz, A. M., Schmiedeke, A., et al. 2013, A&A, 551, A98
    Lazarian, A. & Hoang, T. 2007, MNRAS, 378, 910
    Lee, C. W. & Myers, P. C. 1999, ApJS, 123, 233
    Lee, C. W. & Myers, P. C. 2011, ApJ, 734, 60
    Lee, C. W., Myers, P. C., & Tafalla, M. 1999, ApJ, 526, 788
    Lee, C. W., Myers, P. C., & Tafalla, M. 2001, ApJS, 136, 703
    Lee, J.-E., Evans, II, N. J., Shirley, Y. L., & Tatematsu, K. 2003, ApJ, 583, 789
    Lef`evre, C., Pagani, L., Juvela, M., et al. 2014, A&A, 572, A20
    Lef`evre, C., Pagani, L., Min, M., Poteet, C., & Whittet, D. 2016, A&A, 585, L4
    Lemme, C., Walmsley, C. M., Wilson, T. L., & Muders, D. 1995, A&A, 302, 509
    Levin, S. M., Langer, W. D., Velusamy, T., Kuiper, T. B. H., & Crutcher, R. M. 2001, ApJ, 555, 850
    Li, Z.-Y., Shematovich, V. I., Wiebe, D. S., & Shustov, B. M. 2002, ApJ, 569, 792
    Li, Z.-Y. & Shu, F. H. 1996, ApJ, 472, 211
    Lin, S.-J., Pagani, L., Lai, S.-P., Lef`evre, C., & Lique, F. 2020, A&A, 635, A188
    Linsky, J. L. 2007, Space Sci. Rev., 130, 367
    Lippok, N., Launhardt, R., Henning, T., et al. 2016, A&A, 592, A61
    Lippok, N., Launhardt, R., Semenov, D., et al. 2013, A&A, 560, A41
    Lique, F., Daniel, F., Pagani, L., & Feautrier, N. 2015, MNRAS, 446, 1245
    Liu, H.-L., Stutz, A. M., & Yuan, J.-H. 2019, MNRAS, 487, 1259
    Liu, J., Qiu, K., Berry, D., et al. 2019, ApJ, 877, 43
    Lodders, K. 2003, ApJ, 591, 1220
    Lombardi, M. & Alves, J. 2001, A&A, 377, 1023
    Mac Low, M.-M., Klessen, R. S., Burkert, A., & Smith, M. D. 1998, Physical Review Letters, 80, 2754
    Magalh ̃aes, V. S., Hily-Blant, P., Faure, A., Hernandez-Vera, M., & Lique, F. 2018, A&A, 615, A52
    Maret, S., Bergin, E. A., & Tafalla, M. 2013, A&A, 559, A53
    McKee, C. F. & Ostriker, E. C. 2007, ARA&A, 45, 565
    McKee, C. F. & Zweibel, E. G. 1992, ApJ, 399, 551
    M ̈oller, T., Bernst, I., Panoglou, D., et al. 2013, A&A, 549, A21
    Montier, L., Plaszczynski, S., Levrier, F., et al. 2015, A&A, 574, A136
    Mouschovias, T. C., Tassis, K., & Kunz, M. W. 2006, ApJ, 646, 1043
    Myers, P. C. 1983, ApJ, 270, 105
    Myers, P. C., Fuller, G. A., Goodman, A. A., & Benson, P. J. 1991, ApJ, 376, 561
    Myers, P. C., Linke, R. A., & Benson, P. J. 1983, ApJ, 264, 517
    Navarro-Almaida, D., Fuente, A., Majumdar, L., et al. 2021, A&A, 653, A15
    Nguyen, T., Baouche, S., Congiu, E., et al. 2018, A&A, 619, A111
    Nilsson, A., Hjalmarson, Å., Bergman, P., & Millar, T. J. 2000, A&A, 358, 257
    Ostriker, E. C., Stone, J. M., & Gammie, C. F. 2001, ApJ, 546, 980
    Padoan, P. & Nordlund, Å. 1999, ApJ, 526, 279
    Pagani, L., Bacmann, A., Cabrit, S., & Vastel, C. 2007, A&A, 467, 179
    Pagani, L., Bacmann, A., Motte, F., et al. 2004, A&A, 417, 605
    Pagani, L., Bourgoin, A., & Lique, F. 2012, A&A, 548, L4
    Pagani, L., Daniel, F., & Dubernet, M.-L. 2009a, A&A, 494, 719
    Pagani, L., Frayer, D., Pagani, B., & Lef`evre, C. 2020, A&A, 643, A126
    Pagani, L., Lef`evre, C., Juvela, M., Pelkonen, V. M., & Schuller, F. 2015, A&A, 574, L5
    Pagani, L., Lesaffre, P., Jorfi, M., et al. 2013, A&A, 551, A38
    Pagani, L., Pardo, J.-R., Apponi, A. J., Bacmann, A., & Cabrit, S. 2005, A&A, 429, 181
    Pagani, L., Ristorcelli, I., Boudet, N., et al. 2010a, A&A, 512, 3
    Pagani, L., Roueff, E., & Lesaffre, P. 2011, ApJ, 739, L35 124
    Pagani, L., Salez, M., & Wannier, P. G. 1992a, A&A, 258, 479
    Pagani, L., Steinacker, J., Bacmann, A., Stutz, A., & Henning, T. 2010b, Science, 329, 1622
    Pagani, L., Vastel, C., Hugo, E., et al. 2009b, A&A, 494, 623
    Pagani, L., Wannier, P. G., Frerking, M. A., et al. 1992b, A&A, 258, 472
    Pattle, K., Fissel, L., Tahani, M., Liu, T., & Ntormousi, E. 2022, arXiv e-prints, arXiv:2203.11179
    Pattle, K., Lai, S.-P., Di Francesco, J., et al. 2021, ApJ, 907, 88
    Pattle, K., Lai, S.-P., Hasegawa, T., et al. 2019, ApJ, 880, 27
    Pattle, K., Ward-Thompson, D., Berry, D., et al. 2017, ApJ, 846, 122
    Pineau des Forˆets, G., Flower, D. R., & McCarroll, R. 1991, MNRAS, 248, 173
    Pineda, J. L., Goldsmith, P. F., Chapman, N., et al. 2010, ApJ, 721, 686
    Priestley, F. D., Viti, S., & Williams, D. A. 2018, AJ, 156, 51
    Redaelli, E., Bizzocchi, L., Caselli, P., et al. 2019, A&A, 629, A15
    Roberts, H., Herbst, E., & Millar, T. J. 2003, ApJ, 591, L41
    Roberts, H., Herbst, E., & Millar, T. J. 2004, A&A, 424, 905
    Shirley, Y. L., Nordhaus, M. K., Grcevich, J. M., et al. 2005, ApJ, 632, 982
    Shu, F. H., Adams, F. C., & Lizano, S. 1987, ARA&A, 25, 23
    Sohn, J., Lee, C. W., Park, Y.-S., et al. 2007, ApJ, 664, 928
    Steinacker, J., Andersen, M., Thi, W. F., et al. 2015, A&A, 582, A70
    Steinacker, J., Pagani, L., Bacmann, A., & Guieu, S. 2010, A&A, 511, A9
    Stutz, A. M., Gonzalez-Lobos, V. I., & Gould, A. 2018, arXiv e-prints,
    arXiv:1807.11496
    Stutz, A. M., Rieke, G. H., Bieging, J. H., et al. 2009, ApJ, 707, 137
    Tafalla, M., Myers, P. C., Caselli, P., & Walmsley, C. M. 2004, A&A, 416, 191
    Tafalla, M., Myers, P. C., Caselli, P., Walmsley, C. M., & Comito, C. 2002, ApJ, 569, 815
    Tafalla, M., Santiago-Garc ́ıa, J., Myers, P. C., et al. 2006, A&A, 455, 577
    Tassis, K. & Mouschovias, T. C. 2004, ApJ, 616, 283
    Tazaki, R., Tanaka, H., Okuzumi, S., Kataoka, A., & Nomura, H. 2016, ApJ, 823, 70
    Tokuda, K., Fujishiro, K., Tachihara, K., et al. 2020, ApJ, 899, 10
    van der Tak, F. F. S., Caselli, P., & Ceccarelli, C. 2005, A&A, 439, 195
    Walmsley, C. M., Flower, D. R., & Pineau des Forˆets, G. 2004, A&A, 418, 1035
    Wang, J.-W., Lai, S.-P., Eswaraiah, C., et al. 2019, ApJ, 876, 42
    Wannier, P. G. 1980, ARA&A, 18, 399
    Ward-Thompson, D., Kirk, J. M., Crutcher, R. M., et al. 2000, ApJ, 537, L135
    Wardle, J. F. C. & Kronberg, P. P. 1974, ApJ, 194, 249
    Weingartner, J. C. & Draine, B. T. 2001, ApJ, 548, 296
    Willacy, K., Langer, W. D., & Velusamy, T. 1998, ApJ, 507, L171
    Wilson, T. L. & Rood, R. 1994, ARA&A, 32, 191
    Wolkovitch, D., Langer, W. D., Goldsmith, P. F., & Heyer, M. 1997, ApJ, 477, 241
    Yin, C., Priestley, F. D., & Wurster, J. 2021, MNRAS, 504, 2381
    Young, K. E., Lee, J.-E., Evans, Neal J., I., Goldsmith, P. F., & Doty, S. D. 2004, ApJ, 614, 252

    QR CODE