研究生: |
陳怡臻 Chen, Yi-Chen |
---|---|
論文名稱: |
探討趨化素CCL5分子結構及其聚集機制 Structural study of CCL5 and its oligomerization mechanism |
指導教授: |
蘇士哲
Sue, Shih-Che |
口試委員: |
孫玉珠
Sun, Yuh-Ju 周三和 Zhou, San-He 陳金榜 Chen, Chin-Pan 陳佩燁 Chen, P-Y 蕭傳鐙 Hsiao, Chwan-Deng |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 99 |
中文關鍵詞: | 趨化素 |
外文關鍵詞: | CCL5 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
CCL5(又稱RANTES)是人體內一項重要的趨化因子,在發炎反應過程中會趨化和誘發白血球附著及移轉其位置至發炎部位。CCL5與許多重要的疾病有關,不論是慢性發炎或是急性發炎性疾病。先前研究指出,CCL5的多種聚合型式會誘發不同生物反應,如細胞遷移、T細胞活化、細胞凋零和HIV細胞入侵。聚合型式受到多種因子調控,例如濃度、溫度、pH值等,CCL5在生理條件下以多聚體型式展現,但在結構生物學上尚未有大的突破。認識CCL5形成多聚體的機制有助於瞭解誘發化學趨化性的作用方式及其與受體的結合作用。截至目前為止,CCL5在臨床或細胞上之相關研究大多以老鼠做為實驗之動物模型,老鼠與人類CCL5在序列上十分相似,但目前研究並未針對老鼠CCL5做任何結構資訊之發表,因此本研究利用核磁共振技術解出老鼠CCL5雙聚體結構,證明老鼠與人類兩者之間的結構相似性。我們又以雙聚體為基礎單位,配合前人點突變之研究成果,設計出新的策略獲取限定長度的三聚體。CCL5會在中性條件下形成高單位CCL5聚合體並大量沈澱,在酸性條件下則是以雙聚體為主,而E66S在中性則是以雙聚體為主。CCL5與E66S在比例固定且適當的pH下混合,成功地在液相獲取三聚體,並利用小角度X光散射儀和凝膠過濾層析法驗證,再利用蛋白質結晶及X光繞射的技術成功解析出CCL5三聚體的結構,其三維結構顯示A和B鏈形成之雙聚體與以往所知的趨化素CC類雙聚體類似,衍伸出的單體C鏈以新的方式鍵結至另一分子的N端。這特殊的三聚體構型能重複排列並衍生成一條W型長鏈,排列蛋白質表面正電的氨基酸且完整的曝露40s loop(GAG多醣體的結合區域)。我們以穿透式電子顯微鏡進一步證實N端序列移除的蛋白會影響CCL5多聚體形成之能力。本研究解出一組新的多聚體構型之結合區域,為多聚體之研究提供了新的思考方向。
CCL5, also known as RANTES, controls leukocyte migration and is associated with inflammation and development. CCL5 shows great propensity for protein oligomerization in physiological condition. The oligomer formation has been correlated with cell migration, T cell activation, apoptosis, and HIV cell entry. The property highly depends on protein concentration and pH. However, the structural information of the high-order oligomer is still limited. The study of the CCL5 oligomerization mechanism would aid the understanding of how CCL5 oligomer performs chemotaxis and binds cell surface receptors. Using human and mouse CCL5 as models, we determined the CCL5 dimer structure by nuclear magnetic resonance (NMR) and X-ray crystallography, either using native proteins or mutants. The structure study of mouse CCL5 shows good similarity with human CCL5 structure. However, the dimeric interface constituted by the N-terminal ends contains structural flexibility, therefore, causing distinct orientations between the two monomeric units. In addition, although the two proteins have ~84% sequence identity, they have slightly different oligomerization sensitivity toward pH change. The property could be correlated with the functional concentrations. The solved dimeric structure acts as the building block for constructing the oligomer formation. We propose a new strategy to trap the CCL5 trimer. To prepare the trimer formation, we construct a CCL5 mutation, E66S, to eliminate the aggregation propensity that E66S only shows dimerization property. By mixing native CCL5 with the CCL5-E66S mutant under an optimal protein ratio, CCL5 trimer existed as a dominative formation in solution, which is detected by SAXS, FPLC and NMR. The trimer structure is solved by X-ray crystallography. Surprisingly, the N-terminal region contributes additional interaction with the third CCL5 unit. This structure could be extended to a W-sharped oligomer that elicits a new model for CCL5 oligomerization. This oligomer structure possesses many positive charged residues and fully exposes the 40s loop, readily for GAG binding. In the study, we compared with the oligomerization status of the N-terminal truncated CCL5 mutant. The images from transmission electron microscope (TEM) emphasize the significance of CCL5 N-terminus. The new trimer structure defines a novel interface, responsible for CCL5 oligomerization
1. Nickel W, Rabouille C (2009) Mechanisms of regulated unconventional protein secretion. Nat Rev Mol Cell Biol 10: 148-155.
2. Torrado LC, Temmerman K, Muller HM, Mayer MP, Seelenmeyer C, et al. (2009) An intrinsic quality-control mechanism ensures unconventional secretion of fibroblast growth factor 2 in a folded conformation. J Cell Sci 122: 3322-3329.
3. Manjithaya R, Subramani S (2011) Autophagy: a broad role in unconventional protein secretion? Trends Cell Biol 21: 67-73.
4. Baggiolini M (1998) Chemokines and leukocyte traffic. Nature 392: 565-568.
5. Belperio JA, Keane MP, Arenberg DA, Addison CL, Ehlert JE, et al. (2000) CXC chemokines in angiogenesis. Journal of leukocyte biology 68: 1-8.
6. Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12: 121-127.
7. Clore GM, Gronenborn AM (1995) Three-dimensional structures of alpha and beta chemokines. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 9: 57-62.
8. Guan E, Wang J, Norcross MA (2001) Identification of human macrophage inflammatory proteins 1alpha and 1beta as a native secreted heterodimer. The Journal of biological chemistry 276: 12404-12409.
9. von Hundelshausen P, Koenen RR, Sack M, Mause SF, Adriaens W, et al. (2005) Heterophilic interactions of platelet factor 4 and RANTES promote monocyte arrest on endothelium. Blood 105: 924-930.
10. Nesmelova IV, Sham Y, Dudek AZ, van Eijk LI, Wu G, et al. (2005) Platelet factor 4 and interleukin-8 CXC chemokine heterodimer formation modulates function at the quaternary structural level. The Journal of biological chemistry 280: 4948-4958.
11. Kuschert GS, Coulin F, Power CA, Proudfoot AE, Hubbard RE, et al. (1999) Glycosaminoglycans interact selectively with chemokines and modulate receptor binding and cellular responses. Biochemistry 38: 12959-12968.
12. Esko JD, Elgavish A, Prasthofer T, Taylor WH, Weinke JL (1986) Sulfate transport-deficient mutants of Chinese hamster ovary cells. Sulfation of glycosaminoglycans dependent on cysteine. The Journal of biological chemistry 261: 15725-15733.
13. Akgul Y, Word RA, Ensign LM, Yamaguchi Y, Lydon J, et al. (2014) Hyaluronan in cervical epithelia protects against infection-mediated preterm birth. J Clin Invest 124: 5481-5489.
14. Maeda N (2015) Proteoglycans and neuronal migration in the cerebral cortex during development and disease. Front Neurosci.
15. Meneghetti MC, Hughes AJ, Rudd TR, Nader HB, Powell AK, et al. (2015) Heparan sulfate and heparin interactions with proteins. J R Soc Interface 12: 0589.
16. Witt DP, Lander AD (1994) Differential binding of chemokines to glycosaminoglycan subpopulations. Curr Biol 4: 394-400.
17. Middleton J, Neil S, Wintle J, Clark-Lewis I, Moore H, et al. (1997) Transcytosis and surface presentation of IL-8 by venular endothelial cells. Cell 91: 385-395.
18. Hoogewerf AJ, Kuschert GS (2000) Glycosaminoglycan binding assays. Methods Mol Biol 138: 173-177.
19. Wang X, Sharp JS, Handel TM, Prestegard JH (2013) Chemokine oligomerization in cell signaling and migration. Prog Mol Biol Transl Sci 117: 531-578.
20. Hoogewerf AJ, Kuschert GS, Proudfoot AE, Borlat F, Clark-Lewis I, et al. (1997) Glycosaminoglycans mediate cell surface oligomerization of chemokines. Biochemistry 36: 13570-13578.
21. Lortat-Jacob H, Grosdidier A, Imberty A (2002) Structural diversity of heparan sulfate binding domains in chemokines. Proc Natl Acad Sci U S A 99: 1229-1234.
22. Lortat-Jacob H, Grosdidier A, Imberty A (2002) Structural diversity of heparan sulfate binding domains in chemokines. Proceedings of the National Academy of Sciences of the United States of America 99: 1229-1234.
23. Cardona SM, Garcia JA, Cardona AE (2013) The fine balance of chemokines during disease: trafficking, inflammation, and homeostasis. Methods Mol Biol 1013: 1-16.
24. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393: 595-599.
25. Wang JM, Deng X, Gong W, Su S (1998) Chemokines and their role in tumor growth and metastasis. J Immunol Methods 220: 1-17.
26. Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, et al. (2014) International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev 66: 1-79.
27. Balkwill FR (2012) The chemokine system and cancer. J Pathol 226: 148-157.
28. Bonsch C, Munteanu M, Rossitto-Borlat I, Furstenberg A, Hartley O (2015) Potent Anti-HIV Chemokine Analogs Direct Post-Endocytic Sorting of CCR5. PloS one 10: e0125396.
29. Paavola CD, Hemmerich S, Grunberger D, Polsky I, Bloom A, et al. (1998) Monomeric monocyte chemoattractant protein-1 (MCP-1) binds and activates the MCP-1 receptor CCR2B. J Biol Chem 273: 33157-33165.
30. Rajarathnam K, Sykes BD, Kay CM, Dewald B, Geiser T, et al. (1994) Neutrophil activation by monomeric interleukin-8. Science 264: 90-92.
31. Schwarz MK, Wells TN (2002) New therapeutics that modulate chemokine networks. Nat Rev Drug Discov 1: 347-358.
32. Kufareva I (2016) Chemokines and their receptors: insights from molecular modeling and crystallography. Curr Opin Pharmacol 30: 27-37.
33. Zheng Y, Han GW, Abagyan R, Wu B, Stevens RC, et al. (2017) Structure of CC Chemokine Receptor 5 with a Potent Chemokine Antagonist Reveals Mechanisms of Chemokine Recognition and Molecular Mimicry by HIV. Immunity 46: 1005-1017 e1005.
34. Qin L, Kufareva I, Holden LG, Wang C, Zheng Y, et al. (2015) Structural biology. Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine. Science 347: 1117-1122.
35. Burg JS, Ingram JR, Venkatakrishnan AJ, Jude KM, Dukkipati A, et al. (2015) Structural biology. Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor. Science 347: 1113-1117.
36. Schröder J-M (1995) Cytokine networks in the skin. Journal of investigative dermatology 105: 20S-24S.
37. Niwa Y, Akamatsu H, Niwa H, Sumi H, Ozaki Y, et al. (2001) Correlation of tissue and plasma RANTES levels with disease course in patients with breast or cervical cancer. Clinical Cancer Research 7: 285-289.
38. Terada N, Maesako K-i, Hamano N, Houki G, Ikeda T, et al. (1997) Eosinophil adhesion regulates RANTES production in nasal epithelial cells. The Journal of Immunology 158: 5464-5470.
39. Appay V, Brown A, Cribbes S, Randle E, Czaplewski LG (1999) Aggregation of RANTES Is Responsible for Its Inflammatory Properties CHARACTERIZATION OF NONAGGREGATING, NONINFLAMMATORY RANTES MUTANTS. Journal of Biological Chemistry 274: 27505-27512.
40. Arnaud C, Beguin PC, Lantuejoul S, Pepin J-L, Guillermet C, et al. (2011) The inflammatory preatherosclerotic remodeling induced by intermittent hypoxia is attenuated by RANTES/CCL5 inhibition. American journal of respiratory and critical care medicine 184: 724-731.
41. Gerard C, Rollins BJ (2001) Chemokines and disease. Nat Immunol 2: 108-115.
42. Kuschert GS, Coulin F, Power CA, Proudfoot AE, Hubbard RE, et al. (1999) Glycosaminoglycans interact selectively with chemokines and modulate receptor binding and cellular responses. Biochemistry 38: 12959-12968.
43. Proudfoot AE (2006) The biological relevance of chemokine-proteoglycan interactions. Biochemical Society Transactions 34: 422.
44. Koenen RR, Weber C (2010) Therapeutic targeting of chemokine interactions in atherosclerosis. Nature reviews Drug discovery 9: 141-153.
45. Proudfoot AE, Fritchley S, Borlat F, Shaw JP, Vilbois F, et al. (2001) The BBXB motif of RANTES is the principal site for heparin binding and controls receptor selectivity. Journal of Biological Chemistry 276: 10620-10626.
46. Zernecke A, Shagdarsuren E, Weber C (2008) Chemokines in atherosclerosis an update. Arteriosclerosis, thrombosis, and vascular biology 28: 1897-1908.
47. Lievens D, von Hundelshausen P (2011) Platelets in atherosclerosis. Thromb Haemost 106: 827-838.
48. Koenen RR, von Hundelshausen P, Nesmelova IV, Zernecke A, Liehn EA, et al. (2009) Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nature medicine 15: 97-103.
49. von Hundelshausen P, Weber KS, Huo Y, Proudfoot AE, Nelson PJ, et al. (2001) RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium. Circulation 103: 1772-1777.
50. Koenen RR, von Hundelshausen P, Nesmelova IV, Zernecke A, Liehn EA, et al. (2009) Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nature medicine 15: 97-103.
51. Hu DJ, Dondero TJ, Rayfield MA, George JR, Schochetman G, et al. (1996) The emerging genetic diversity of HIV: the importance of global surveillance for diagnostics, research, and prevention. Jama 275: 210-216.
52. Edward A. Berger PMMaJMF (1999) CHEMOKINE RECEPTORS AS HIV-1 CORECEPTORS: Roles in Viral Entry, Tropism, and Disease. Annu Rev Immunol 17: 657-700.
53. Liu H, Chao D, Nakayama EE, Taguchi H, Goto M, et al. (1999) Polymorphism in RANTES chemokine promoter affects HIV-1 disease progression. Proc Natl Acad Sci U S A 96: 4581-4585.
54. Schwarz MK, Wells TN (2002) New therapeutics that modulate chemokine networks. Nature Reviews Drug Discovery 1: 347-358.
55. Skelton NJ, Aspiras F, Ogez J, Schall TJ (1995) Proton NMR assignments and solution conformation of RANTES, a chemokine of the C-C type. Biochemistry 34: 5329-5342.
56. Carlson J, Baxter SA, Dreau D, Nesmelova IV (2013) The heterodimerization of platelet-derived chemokines. Biochim Biophys Acta 1834: 158-168.
57. Hu JZ, Pugmire RJ, Orendt AM, Grant DM, Ye C (1992) Selective saturation and inversion of multiple resonances in high-resolution solid-state 13C experiments using slow spinning CP/MAS and tailored DANTE pulse sequences. Solid State Nucl Magn Reson 1: 185-195.
58. Fairbrother WJ, Cavanagh J, Dyson HJ, Palmer AG, 3rd, Sutrina SL, et al. (1991) Polypeptide backbone resonance assignments and secondary structure of Bacillus subtilis enzyme IIIglc determined by two-dimensional and three-dimensional heteronuclear NMR spectroscopy. Biochemistry 30: 6896-6907.
59. Diplom-Biologe Alisina Sarabi aus Kabul A (2011) structural and functional characterization of the interactions of platelet-derived chemokines CCL5, CXCL4 and CXCL4L1.
60. Hoover DM, Shaw, J., Gryczynski, Z., Proudfoot, A.E.I., Wells, T. (2000) The Crystal Structure of MET-RANTES: Comparison with Native RANTES and AOP-RANTES. PROTEIN PEPTLETT 7: 73-82.
61. Kuo JH, Chen YP, Liu JS, Dubrac A, Quemener C, et al. (2013) Alternative C-terminal helix orientation alters chemokine function: structure of the anti-angiogenic chemokine, CXCL4L1. The Journal of biological chemistry 288: 13522-13533.
62. Proudfoot AE, Power CA, Hoogewerf AJ, Montjovent MO, Borlat F, et al. (1996) Extension of recombinant human RANTES by the retention of the initiating methionine produces a potent antagonist. The Journal of biological chemistry 271: 2599-2603.
63. Stock MK, Hammerich L, do ON, Berres ML, Alsamman M, et al. (2013) Met-CCL5 modifies monocyte subpopulations during liver fibrosis regression. Int J Clin Exp Pathol 6: 678-685.
64. Graham GJ, MacKenzie J, Lowe S, Tsang ML, Weatherbee JA, et al. (1994) Aggregation of the chemokine MIP-1 alpha is a dynamic and reversible phenomenon. Biochemical and biological analyses. The Journal of biological chemistry 269: 4974-4978.
65. Ren M, Guo Q, Guo L, Lenz M, Qian F, et al. (2010) Polymerization of MIP-1 chemokine (CCL3 and CCL4) and clearance of MIP-1 by insulin-degrading enzyme. EMBO J 29: 3952-3966.
66. Lodi PJ, Garrett DS, Kuszewski J, Tsang ML, Weatherbee JA, et al. (1994) High-resolution solution structure of the beta chemokine hMIP-1 beta by multidimensional NMR. Science 263: 1762-1767.
67. Czaplewski LG, McKeating J, Craven CJ, Higgins LD, Appay V, et al. (1999) Identification of amino acid residues critical for aggregation of human CC chemokines macrophage inflammatory protein (MIP)-1alpha, MIP-1beta, and RANTES. Characterization of active disaggregated chemokine variants. The Journal of biological chemistry 274: 16077-16084.
68. Punchard NA, Whelan CJ, Adcock I (2004) The Journal of Inflammation. J Inflamm (Lond) 1: 1.
69. Lim JK, Lu W, Hartley O, DeVico AL (2006) N-terminal proteolytic processing by cathepsin G converts RANTES/CCL5 and related analogs into a truncated 4-68 variant. Journal of leukocyte biology 80: 1395-1404.
70. Paavola CD, Hemmerich S, Grunberger D, Polsky I, Bloom A, et al. (1998) Monomeric monocyte chemoattractant protein-1 (MCP-1) binds and activates the MCP-1 receptor CCR2B. The Journal of biological chemistry 273: 33157-33165.
71. Kufareva I, Salanga CL, Handel TM (2015) Chemokine and chemokine receptor structure and interactions: implications for therapeutic strategies. Immunol Cell Biol 93: 372-383.
72. Appay V, Brown A, Cribbes S, Randle E, Czaplewski LG (1999) Aggregation of RANTES is responsible for its inflammatory properties. Characterization of nonaggregating, noninflammatory RANTES mutants. The Journal of biological chemistry 274: 27505-27512.
73. Dairaghi DJ, Soo KS, Oldham ER, Premack BA, Kitamura T, et al. (1998) RANTES-induced T cell activation correlates with CD3 expression. J Immunol 160: 426-433.
74. Jin H, Kagiampakis I, Li P, Liwang PJ (2010) Structural and functional studies of the potent anti-HIV chemokine variant P2-RANTES. Proteins 78: 295-308.
75. Wang X, Watson C, Sharp JS, Handel TM, Prestegard JH (2011) Oligomeric structure of the chemokine CCL5/RANTES from NMR, MS, and SAXS data. Structure 19: 1138-1148.
76. Liang WG, Triandafillou CG, Huang TY, Zulueta MM, Banerjee S, et al. (2016) Structural basis for oligomerization and glycosaminoglycan binding of CCL5 and CCL3. Proc Natl Acad Sci U S A 113: 5000-5005.
77. Segerer S, Johnson Z, Rek A, Baltus T, von Hundelshausen P, et al. (2009) The basic residue cluster (55)KKWVR(59) in CCL5 is required for in vivo biologic function. Mol Immunol 46: 2533-2538.
78. Nesmelova IV, Sham Y, Gao J, Mayo KH (2008) CXC and CC chemokines form mixed heterodimers: association free energies from molecular dynamics simulations and experimental correlations. The Journal of biological chemistry 283: 24155-24166.
79. Nesmelova IV, Idiyatullin D, Mayo KH (2004) Measuring protein self-diffusion in protein-protein mixtures using a pulsed gradient spin-echo technique with WATERGATE and isotope filtering. Journal of magnetic resonance 166: 129-133.
80. Grommes J, Alard JE, Drechsler M, Wantha S, Morgelin M, et al. (2012) Disruption of platelet-derived chemokine heteromers prevents neutrophil extravasation in acute lung injury. American journal of respiratory and critical care medicine 185: 628-636.
81. Gute DC, Ishida T, Yarimizu K, Korthuis RJ (1998) Inflammatory responses to ischemia and reperfusion in skeletal muscle. Molecular and cellular biochemistry 179: 169-187.
82. Naidu BV, Farivar AS, Woolley SM, Grainger D, Verrier ED, et al. (2004) Novel broad-spectrum chemokine inhibitor protects against lung ischemia-reperfusion injury. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation 23: 128-134.
83. Teoh NC (2011) Hepatic ischemia reperfusion injury: Contemporary perspectives on pathogenic mechanisms and basis for hepatoprotection-the good, bad and deadly. Journal of gastroenterology and hepatology 26 Suppl 1: 180-187.
84. Barkin RL, Barkin SJ, Barkin DS (2005) Perception, assessment, treatment, and management of pain in the elderly. Clin Geriatr Med 21: 465-490, v.
85. Finnerup NB, Otto M, McQuay HJ, Jensen TS, Sindrup SH (2005) Algorithm for neuropathic pain treatment: an evidence based proposal. Pain 118: 289-305.
86. Freeman R (2005) The treatment of neuropathic pain. CNS Spectr 10: 698-706.
87. Hainline B (2005) Chronic pain: physiological, diagnostic, and management considerations. Psychiatr Clin North Am 28: 713-735, 731.
88. Bansal V KJ, Misra UK (2006) Diabetic neuropathy. Postgrad Med J 82: 95-100.
89. Berker E, Dincer N (2005) [Chronic pain and rehabilitation]. Agri 17: 10-16.
90. Campbell JN, Meyer RA (2006) Mechanisms of neuropathic pain. Neuron 52: 77-92.
91. Moalem G, Tracey DJ (2006) Immune and inflammatory mechanisms in neuropathic pain. Brain Res Rev 51: 240-264.
92. Opree A, Kress M (2000) Involvement of the proinflammatory cytokines tumor necrosis factor-alpha, IL-1 beta, and IL-6 but not IL-8 in the development of heat hyperalgesia: effects on heat-evoked calcitonin gene-related peptide release from rat skin. J Neurosci 20: 6289-6293.
93. Woolf CJ (2004) Dissecting out mechanisms responsible for peripheral neuropathic pain: implications for diagnosis and therapy. Life Sci 74: 2605-2610.
94. Frisen J, Risling M, Fried K (1993) Distribution and axonal relations of macrophages in a neuroma. Neuroscience 55: 1003-1013.
95. Thacker MA, Clark AK, Marchand F, McMahon SB (2007) Pathophysiology of peripheral neuropathic pain: immune cells and molecules. Anesth Analg 105: 838-847.
96. Chen YP, Wu HL, Boye K, Pan CY, Chen YC, et al. (2017) Oligomerization State of CXCL4 Chemokines Regulates G Protein-Coupled Receptor Activation. ACS Chem Biol 12: 2767-2778.
97. Iida Y, Xu B, Xuan H, Glover KJ, Tanaka H, et al. (2013) Peptide inhibitor of CXCL4-CCL5 heterodimer formation, MKEY, inhibits experimental aortic aneurysm initiation and progression. Arteriosclerosis, thrombosis, and vascular biology 33: 718-726.