簡易檢索 / 詳目顯示

研究生: 唐御評
Tang, Yu-Ping
論文名稱: 以蠶絲蛋白為閘極介電層之五苯環有機薄膜電晶體在不同相對濕度的特性
Characteristics of pentacene organic thin-film transistors with silk fibroin as gate dielectric at different humidity
指導教授: 黃振昌
Huang, Jhen-Chang
口試委員: 林錫堅
Lin, Xi-Jian
黃志濤
Huang, Zhi-Tao
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 62
中文關鍵詞: 有機薄膜電晶體五苯環封裝相對濕度蠶絲蛋白
外文關鍵詞: OTFT, pentacene, encapsulation, relative humidity, silk fibroin
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 使用蠶絲蛋白作為閘極介電層,P-type有機半導體材料五苯環 ( pentacene ) 作為主動層的有機薄膜電晶體,有高子遷移率、低操作電壓的特性,但其特性受環境相對濕度影響,本論文使用封裝技術控制相對濕度,探討相對濕度對於有機薄膜電晶體的特性影響。在相對濕度為60%時電晶體擁有最佳的特性,其飽和區的載子遷移率約為16.8 cm2V-1s-1 、開關特性比約為1000倍;當相對濕度下降到30%時,其載子遷移率下降至約4 cm2V-1s-1,開關比特性下降至約100倍;當相對濕度上升到70%時,其載子遷移率下降至約0.28 cm2V-1s-1。由此可見電晶體的特性和相對濕度有密切關係。
    電晶體的特性受相對濕度影響是由於閘極介電層的蠶絲蛋白薄膜電容因相對濕度改變而變化。在低相對濕度時,電容值稍微上升;當相對濕度介於40%~60%時,電容值有明顯的上升,此與電晶體的特性提升有關;當相對濕度超過60%,其電容劇烈上升,卻降低電晶體的特性。


    Device characteristics of pentacene organic thin-film transistors ( OTFTs ) with silk fibroin as gate dielectric vary with relative humidity in air ambient. An encapsulation method has been developed to keep OTFTs at a fixed relative humidity. At ca. 60% relative humidity, the OTFTs exhibit a best field-effect mobility value of ca. 16.8 cm2V-1s-1 in the saturation regime and an on/off ratio of approximately three orders of magnitudes. When the relative humidity decreases to ca. 30%, filed-effect mobility decreases to ca. 4 cm2V-1s-1 and the on/off ratio reduces to approximately two orders of magnitudes. When the relative humidity increases to ca. 70%, filed-effect mobility decreases to ca. 0.28 cm2V-1s-1 and capacitance sharply increases. Device characteristics of the OTFTs depend on relative humidity.
    The humidity dependence of device characteristics is attributed to the change of capacitance of silk fibroin gate dielectric at different relative humidity. In the low humidity regime, quasi-static capacitance increases slowly with relative humidity. When relative humidity is about 40%~60%, quasi-static capacitance increases rapidly with relative humidity, which is strongly correlated to the better device performance at this relative humidity. When relative humidity is higher than 60%, the quasi-static capacitance extremely increases with relative humidity and decreases device performance.

    中文摘要 I ABSTRACT II 目錄 III 圖目錄 V 表目錄 VII 第一章 緒論 1 1.1 研究動機 1 1.2 論文架構 2 第二章 文獻回顧 3 2.1 有機薄膜電晶體簡介 3 2.2 有機薄膜電晶體傳導機制 5 2.3 有機薄膜電晶體的結構 5 2.4 有機薄膜電晶體半導體材料 6 2.4.1 有機小分子 ( oligomer ): 6 2.4.2 有機高分子 ( polymer ) 7 2.4.3 有機金屬錯合物( organic metallic compound ) 7 2.5 有機薄膜電晶體所使用之材料 7 2.5.1 基材 7 2.5.2 主動層 8 2.5.3 介電層 8 2.6 有機薄膜電晶體操作原理與基本公式 9 2.7 紫外光硬化樹脂之封裝簡介 12 2.7.1 紫外光硬化樹脂材料介紹 12 2.7.2 紫外光硬化樹脂之硬化原理 15 第三章 實驗步驟與方法 22 3.1 實驗流程 22 3.2 實驗材料 23 3.2.1 五苯環 ( Pentacene ) 23 3.2.2 蠶絲蛋白 ( Silk Fibroin ) 23 3.2.3 紫外光硬化樹脂-LETBOND®5802 24 3.3 實驗裝置 25 3.3.1 熱蒸鍍機 25 3.3.2 旋轉塗佈機 25 3.3.3 紫外光固化機 ( UV curing ) 26 3.4 量測分析儀器 26 3.4.1 I-V電性量測系統 26 3.4.2 準靜態電容 ( Quasi-Static Capacitance ) 電性量測系統 26 3.5 實驗介紹 27 3.5.1 介電層成膜 27 3.5.2 有機半導體層的沉積 28 3.5.3 電極製備 29 3.5.4 有機薄膜電晶體封裝 30 第四章 結果與討論 36 4.1 封裝膠材的選擇 36 4.2 相對溼度對於電容之探討 37 4.3 相對濕度對電性的影響 40 4.4 封裝蠶絲蛋白之可靠性測試 44 4.5 總結 46 第五章 結論 59 第六章 參考文獻 61

    [1] Lee, C. C., et al., 11th Int. Display Workshops, Niigata, Japan, (2004), 351 [2]www.sciencenews.org/articles/20040131/fob1.asp
    [3] www.polymervision.com
    [4] Huitema, H. E. A., et al., 12th Int. Display Workshops/Asia Display, Takamatsu, Japan, (2005), 857
    [5] Burns, S. E., et al., 12th Int. Display Workshops/Asia Display, Takamatsu, Japan, (2005), 16
    [6] Fujisaki, Y., et al., 12th Int. Display Workshops/Asia Display, Takamatsu, Japan, (2005), 1041
    [7] Inoue, Y., et al., 11th Int. Display Workshops, Niigata, Japan, (2004), 355
    [8] Wang C.-H., Hsieh C.-Y., Prof. Hwang J.-C., adv. Mater. 2011, 23, 1630–163
    [9] Tsai L-S, Hwang J-C, Lee C-Y, Lin Y-T, Tsai C-L, Chueh T-H C, Y-L, Meng H-F., Appl. Phys. Lett. (2013),103, 233304
    [10] Koezuka H., Tsumura A., Ando T., Synthetic Metals. (1987), 18, 699
    [11] Horowitz G., Peng X., Fichou D., Garnier F., Synth. Met., (1992) 51, 419.
    [12] Klauk, H., Halik, M., Zschieschang, U., Schmid, G.; Radlik., W. Weber., W. J. Appl. Phys. (2002), 92, 5259.
    [13] Kelley T W, Boardman L D, Dunbar T D, Muyres D V, Pellerite M J, Smith T P., J. Phys. Chem. B. (2003), 107 5877-81
    [14] Lee S, Koo B, Shin J, Lee E, Park H, Kim H., Appl. Phys. Lett. (2006), 88 162109
    [15] Tan H. S., Kulkarni S. R., Cahyadi T., Lee P. S., Mhaisalkar S. G., Kasim J., Shen Z. X., Zhu F. R., Appl. Phys. Lett. (2008), 93, 183503
    [16] Wei C.-Y., Kuo S.-H., Hung Y.-M., Huang W.-C., Adriyanto F., Wang Y.-H., IEEE Electron Device Lett. (2011), 32(1), 90.
    [17] Chang, J. W., et al., Adv. Mater. (2011), 23, 4077–4081
    [18] Mao, L. K., et al., Organic Electronics 14 (2013) 1170–1176
    [19] Lee C.Y., Hwang J.C., Chueh Y.L., Chang T.H., Cheng Y.Y., Lyu P.C. Org. Electron., 14 (2013), p. 2645
    [20] Gundlach D. J., Lin Y. Y., Jackson T. N., Nelson S. F., Schlom D. G., IEEE Electron Device Lett. (1997), 18, 87
    [21] Hagen Klauk, Chem. Soc. Rev. (2010), 39, 2643–2666
    [22] acchetti A. Yoon F,M. H., Marks T. J., Adv. Mater. (2005), 17, 1705-1725
    [23] 王文杰,以氮化鋁作為介電層之五苯環有機薄膜電晶體-時效性處理理與基板溫 度度效應研究,材料料科學工程研究所,2010,國立立清華大學
    [24] 劉建良,「UV Curing 發展簡介及應用」,化工科技與商情,第四十一期,2003,第 1-4 頁。
    [25] Okita, Tsutomu, Fuji Photo Film Co., Ltd. USA Patent 4952435.
    [26] Usifer, Douglas A, Broderick, Ifeanyi C, CasChem, Inc. USA Patent 5426166.
    [27] Fujimoto, Hiroshi (Shiga, JP), Miyake, Hideo (Otsu, JP), Toyo Boseki Kabushiki Kaish (JP). USA Patent 4379039.
    [28] Hoyle C.E., Kinstle J.F. (Eds.), Radiation Curing of Polymeric Materials, American Chemical Society, Washington, DC, (1990)
    [29]楊建文、曾兆華、陳用烈,“光固化塗料及應用",北京:化學 工業出版社,2006
    [30] Fouassier J. P., “Photoinitiation, Photopolymerization, and
    Photocuring”, MunichVienna, New York, (1995)
    [31] S. Peter papers, UV Curing, Science and Technology, Technology
    Marketing Corporation, (1980).
    [32] Hoyle C.E., Kinstle J.F. (Eds.), Radiation Curing of Polymeric Materials, American Chemical Society, Washington, DC, (1990)
    [33] Ricardo R, Bert N, Norbert K, Leonard C. F, Richard F. H, Antoine K, Giacinto S., PHYSICAL REVIEW B, (2003), 67, 125406
    [34] LETBOND®物質安全資料、產品技術資料,5802防水級玻璃接著用光硬化樹脂
    [35] T. Jung, A. Dodabalapur, R. Wenz, and S. Mohapatra, Appl. Phys. Lett. 87, 182109 (2005).
    [36] Lee S., Koo B., Shin J., Lee E., Park H., Kim H., Appl. Phys. Lett. (2006), 88,162109
    [37] Careri G., Giansanti A., Rupley J.A., Phys. Rev. A 37 (1988) 2703.
    [38] Careri G., Giansanti A., Rupley J.A., Proc. Natl. Acad. Sci. (1986), USA 83 6810.
    [39] Dunlap D. H., Parris P. E., Kenkre V. M., Phys. Rev. Lett. (1996), 77, 542 18
    [40] Gundlach D. J., Jackson T. N., Schlom D. G., Nelson S. F., Appl.Phys. Lett. (1999), 74,3302
    [41] Zou D., Tsutsui T., J. Appl. Phys. (2000), 87, 1951.
    [42] Herlogsson L., Crispin X., N. Robinson D., Sandberg M., Hagel O. J., Gustafsson G., Berggren M., Adv. Mater. (2007), 19, 97.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE