簡易檢索 / 詳目顯示

研究生: 吳雪鴻
Hsueh-Hung Wu
論文名稱: 薄膜系統之X光三光共振繞射研究
X-Ray Three-Beam Resonance Diffraction Study on Thin Film Systems
指導教授: 張石麟
Shih-Lin Chang
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 86
中文關鍵詞: 薄膜X光共振介面結構
外文關鍵詞: thin film, X ray, resonance, interface structure
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在多層膜系統中,因介面效應而產生的有趣機制一直是物理研究中重要的課題之一。欲深入探討發生這些現象的背後機制,相信瞭解介面結構是一個最基本且重要的出發點。但因多層膜的複雜幾何結構
    ,使得不易透過一般的繞射方法得知介面結構資訊。在本研究中,我們成功地利用三光共振繞射方法來獲取介面的結構資訊。
    選擇經過Cd $L_{III}$吸收邊的不同入射光能量,測量一系列的$(200/\bar{3}\bar{1}1)$及$(200/1\bar{3}1)$
    ISR三光繞射強度。除三光不變相位外,利用 ISR反射面可給出在共振條件下的三光共振相位。進而選擇八組
    介於CdTe(002)與InSb(002)間的介面繞射為主級繞射 (primary reflection) 來測量一系列與能量有關的
    ISR 三光繞射強度。實驗結果發現,當主級繞射愈接近CdTe (002)繞射光,其測量到的共振相位變化越大;
    相反地,愈靠近InSb (002)繞射光,變化則相對減小。配合理論計算,擬合在不同主級繞射下,
    共振相位隨入射光能量變化的實驗結果,利用此實驗方法,我們成功得到在介面,其結構沿垂直晶面方向的參雜組成變化。


    The investigation of the interfacial strusture of multi-layered thin film systems has been regarded as an important issue due to its high relevance to some particular properties of these systems.
    Owing to its complex structural geometry, obtaining the
    information on the interfacial characterization has proved to be a difficult task.
    In recent times, although numerous efforts have been dedicated to solve this problem
    through the development of practical experimental techniques, most of them still have some liminations.
    In this thesis, we address the concept that the structural characterization of the interface
    can be possibly achieved by utilizing the experimental method of x-ray multiple diffraction under resonance condition.
    By using the peculiar \emph{Zincblende} structure that makes
    possible the measurement of the inversion symmetry-related cases of three-wave diffraction, we have
    successfully extracted the crystallographic phase of a thin film system for the first time.

    A series of x-ray three-beam diffraction $(200/\bar{3}\bar{1}1)/(200/1\bar{3}1)$
    were conducted under resonant conditions to measure the concentrations of the constitunt
    elements of the interface between a (100) CdTe thin film and a (100) InSb substrate. The
    three-beam diffraction profiles versus the azimuthal angle of rotation around [200] reveal
    a wide variety of change in phase shift due to resonance for photon energies in the
    vicinity of the Cd $L_{III}$ absorption edge. At different
    momentum transfers $q_{r}$ along $[200]$, sensitive to the
    interfacial structure, the phase shift in the resonant state also
    provides sufficient information about the distributions of the Cd and
    Te concentrations. This information, combined with a theoretical analysis
    of the crystallographic phase of the structural-factor triplets, allows us
    to determine the composition of Cd and Te as a function of depth normal to the interface.
    In addition, via the propagation of the
    secondary $(\bar{3}\bar{1}1)$ and $(1\bar{3}1)$ reflected beams
    along the interface, possible interface structures parallel to the
    surface can also be deduced.

    The hybridization of the x-ray three-beam intensity profiles has appeared distinctly
    in the diffraction process, especally at some momentum transfers that have a higher
    sensitivity to the interfacial structure. The anomalous disharmony of these diffracion profiles,
    influenced by the almost perfect lattice mismatch of 0.04\% in the interface,
    manifests the complexity of the interfacial structure. However, the severe hybridation of the intensity
    has imposed a considerable limitation on the analysis of the structural composition
    of the interface. Nevertheless, these data
    might still validate that along the interfacial momentum transfer the variation of the resonance phase in
    different degree indeed come from the effect of the interfacial structure.

    1 Introduction 1 2 X-Ray Diffraction and Diffraction Geometry 3 2.1 Two-Wave Diffraction . . . . . . . . . . . . . . . . . . . . . 8 2.2 Three-Wave Diffraction . . . . . . . . . . . . . . . . . . . . . 11 2.2.1 X-Ray Reflection Phase . . . . . . . . . . . . . . . . 12 2.2.2 Three-Beam Diffraction Experiment . . . . . . . . . . 14 2.3 X-Ray Resonance Diffraction . . . . . . . . . . . . . . . . . . 15 2.3.1 Breakdown of Friedel’s Law . . . . . . . . . . . . . . 17 2.3.2 X-Ray Three-Beam Resonance Diffraction . . . . . . 20 3 Dynamical Theory of X-Ray Diffraction 23 3.1 Fundamental Equation of Wavefield . . . . . . . . . . . . . . 23 3.2 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . 27 3.3 Theoretical Approach . . . . . . . . . . . . . . . . . . . . . . 30 3.3.1 Eigenvalue Problem . . . . . . . . . . . . . . . . . . . 30 3.3.2 Linear Approximation . . . . . . . . . . . . . . . . . 33 3.3.3 Cartesian Coordinates Representation of Eigenvalue and Eigenvector . . . . . . . . . . . . . . . . . . . . . 33 3.4 Determination of X-Ray reflection phases . . . . . . . . . . . 36 3.4.1 First-Order Approximation . . . . . . . . . . . . . . . 36 3.4.2 Quasi-Universal Function . . . . . . . . . . . . . . . . 42 4 Experiment 45 4.1 Beamline and Setup . . . . . . . . . . . . . . . . . . . . . . 45 4.1.1 Beamline Station . . . . . . . . . . . . . . . . . . . . 45 4.1.2 Soft X-Ray Diffractometer . . . . . . . . . . . . . . . 46 4.2 CdTe/InSb Thin Film Material . . . . . . . . . . . . . . . . 47 4.3 Procedure and Method . . . . . . . . . . . . . . . . . . . . . 48 5 Results and Analysis 53 5.1 Quantitative Estimation of Triplet-Phase and Resonance Triplet- Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.1.1 Asymmetrical Lorentzian Function . . . . . . . . . . 53 5.1.2 Triplet Phases of Thin Film CdTe . . . . . . . . . . . 55 5.1.3 Triplet Phases of Interfacial Reflections . . . . . . . . 59 5.2 Theoretical Calculation . . . . . . . . . . . . . . . . . . . . . 63 5.3 Two-Beam Diffraction Anomalous Fine Structure . . . . . . 74 5.4 Hybrid X-Ray Multiple Diffraction . . . . . . . . . . . . . . 75 6 Summary 79 References 80

    [1] J. L. Lorferski, J. Appl. Phys. 27, 777 (1956)
    [2] D. R. Yodershort, U. Debska, J. K. Furdyna, J. Appl. Phys. 58, 4056
    (1985)
    [3] L. Stolt, J.Hedstrom, J. Kessler, M. Ruckh, K.-O. Velthaus, and H.-W.
    Schock, Appl. Phys. Lett. 62, 597 (1993)
    [4] Yu. V. Goryunov, N. N. Garif’yanov, G. G. Khaliullin, and I. A. Garifullin,
    Phys. Rev. B 52, 13450 (1995)
    [5] D. E. Savage, J. Kleiner, N. Schimke, Y. H. Phang, T. Jankowski, J.
    Jacobs, R. Kariotis, and M. G. Lagally, J. Appl. Phys. 69(3), 1411
    (1991)
    [6] J. Grabis, A. Bergmann, A. Nefedov, K. Westerholt, and H. Zabel,
    Phys. Rev. B, 72, 024438 (2005)
    [7] M. Ferrari, L. Lutterotti, J. Appl. Phys. 76, 7246 (1994)
    [8] N. C. Popa, D. Balzar, J. Appl. Crystallogr. 34, 187 (2001)
    [9] Y. P. Stetsko, G. Y. Lin, Y. S. Huang, C. H. Chao, S. L. Chang, Phys.
    Rev. Lett. 86, 2026 (2001)
    [10] T. L. Lee, R. Felici, K. Hirano, B. Cowie, J. Zegenhagen, R. Colella,
    Phys. Rev. B 64, 201316 (2001)
    [11] A. Qteish, R. J. Needs, J. Physics: Condens. Matter 3, 617 (1991)
    [12] S. L. Chang, Crystallogr. Rev. 1, 87 (1987)
    [13] S. L. Chnag, Multiple Diffraction of X-rays in Crystals (Springer-
    Verlag, Berlin, 2004)
    [14] E. Weckert, K. Hummer, Acta Cryst. A 53, 108 (1997)
    [15] C. H. Chao, C. Y. Hunh, Y. S. Huang, C. H. Ching, Y. R. Lee, Y. C.
    Jean, S. C. Lai, Y. P. Stetsko, H. Yuan, S. L. Chang, Acta Crystallogr.
    A 58, 33 (2002)
    [16] A. T. S. Wee, Z. C. Feng, H. H. Hng, K. L. Tan, R. F. C. Farrow, W.
    J. Choyke, J. Phys.: Condens. Matter 7, 4359 (1995)
    [17] S. L. Chang, C. Chao, C. H. Huang, Y. S. Jean, Y. C. Sheu, H. S.
    Liang, F. J. Chien, H. C. Chen, C. K., H. S. Yuan, Acta Cryst. A 55,
    933 (1999)
    [18] S. L. Chang, M. T. Tang, Acta Cryst. A 44, 1065 (1988)
    [19] 許樹恩, 吳泰伯X 光繞射原理與材料結構分析(中國材料科學學會) 1992
    [20] Jens Als-Nielsen and Des McMorrow, Elements of Modern X-Ray
    Physics (John Wiley & Sons, LTD, 2001)
    [21] H. A. Kramers, W. Heisenberg: Z. Phys. 31, 681 (1925)
    [22] Leonid V. Az´aroff, Elements of X-Ray Crystallography (McGRAW-Hill
    Book Company, 1968)
    [23] 蔡裕勝清華大學物理系博士論文1992
    [24] S. L. Chang, J. Mod. Phys. B 6, 2987 (1992)
    [25] S. L. Chang, Yu. P. Stetsko, Y. S. Huang, C. H. Chao, F. J. Liang, and
    C. K. Chen, Phys. Lett. A 264, 328 (1999)
    [26] T. E. Dann, S. C. Chung, L. J. Huang, J. M. Juang, C. I. Chen and
    K. L. Tsang, J. Synchrotron Rad. 5, 664 (1998)
    [27] T. S. Gau, Y. C. Jean, K. Y. Liu, C. H. Chung, C. K. Chen, S. C. Lai,
    C. H. Shu, Y. S. Huang, C. H. Chao, Y. R. Lee, C. T. Chen and S. L.
    Chang, Nucl. Instrum. Methods A, 466, 569 (2001)
    [28] http://kottan-labs.bgsu.edu/teaching/workshop2001/chapter5
    [29] B. Rabin, C. Scharager, M. Hage-Ali, P. Siffert, F. V. Wald, and R. O.
    Bell, Phys. Status Solidi. A, 62, 237 (1980)
    [30] R. G. van Welzenis and B. K. Ridley, Solid State Electron, 27, 113
    (1984)
    [31] T. W. Kim, Y. H. Chang, Y. D. Zheng, A. A Reeder, and B. D. Mc-
    Combe, J. Vac. Sci. Technol. B 5(4), 980 (1987)
    [32] R. G. Van Welzenis and B. K. Ridley, Solid State Electron, 27, 113
    (1984)
    [33] M. Emziane, K. Durose, N. Romeo, A. Bosio, and D. P. Halliday, Semicond.
    Sci. Technol, 20, 434 (2005)
    [34] Y. Tokura and N. Nagaosa, Nature, 410, 180 (2001)
    [35] 李彥儒清華大學物理系博士論文2004
    [36] S. L. Morelhao and L. P. Cardoso, J. Appl. Phys. 73(9), 4218 (1993)
    [37] S. L. Morelhao and L. P. Cardoso, j. Crystal Growth 110, 543 (1991)
    [38] Y. P. Stetsko, notes of the dynamical theory of x-ray diffraction
    [39] Y. P. Stetsko and S. L. Chang, Acta Cryst. A 53, 28 (1997)
    [40] R. Colella, Acta Cryst. A 30, 413 (1974)
    [41] S. L. Chang and M. T. Tang, Acta. Cryst. A 44, 1065 (1988)
    [42] 湯茂竹清華大學物理系博士論文1988
    [43] M. T. Tang and S. L. Chang, Acta Cryst. A 44, 1073 (1988)
    [44] S. L. Chang, H. E. King, Jr., M. T. Huang, Y. Gao, Phys. Rev. Lett.
    67, 3113 (1991)
    [45] S. L. Chang, Appl. Phys. Lett. 37, 819 (1980)
    [46] R. Colella, Acta Crystallogr. Sect. A 30, 413 (1974)
    [47] H. J. Juretschke, Phys. Rev. Lett. 48, 1487 (1982)
    [48] H. J. Juretschke, Phys. Lett. A 92, 183 (1982)
    [49] S. L. Chang, Int. J. Mod. Phys. B 6, 2987 (1992)
    [50] E. Weckert and K. Hummer, Acta Crystallogr. Sect. A 53, 108 (1997)
    [51] S. L. Chang, Y. S. Huang, C. H. Chao, M. T. Tang, and Yu. P. Stetsko,
    Phys. Rev. Lett. 80, 301 (1998)
    [52] C. Y. Jen and S. L. Chang, Acta Cryts. A 48, 655 (1992)
    [53] M. Hart and A. R. Lang, Phys. Rev. Lett. 7, 120 (1961)
    [54] B. Post, Phys. Rev. Lett. 39, 760 (1997)
    [55] L. D. Chapman, D. R. Yoder, R. Colella, Phys. Rev. Lett. 46, 1578
    (1981)
    [56] H. J. Juretschke, Phys. Rev. Lett. 48, 1487 (1982)
    [57] H. J. Juretschke, Phys. Lett. A 92, 183 (1982)
    [58] H. J. Juretschke, Acta Crystallogr. Sect. A 40, 379 (1984)
    [59] K. Hummer, H. W. Billi, Acta Crystallogr. Sect. A 42, 127 (1986)
    [60] Q. Shen, Acta Crystallogr. Sect. A 42, 525 (1986)
    [61] Q. Shen, R. Colella, Acta Crystallogr. Sect. A 44, 17 (1988)
    [62] Q. Shen, K. D. Finkelstein, Phys. Rev. Lett. 65, 3337 (1990)
    [63] K. Hummer, E. Weckert, H. Bondza, Acta Crystallogr. Sect. A 45, 182
    (1989)
    [64] K. Hummer, E. Weckert, H. Bondza, Acta Crystallogr. Sect. A 46, 393
    (1990)
    [65] K. Hummer, E. Weckert, H. Bondza, Acta Crystallogr. Sect. A 47, 60
    (1991)
    [66] Q. Shen, Phys. Rev. Lett. 80, 3268 (1998)
    [67] V. Holy, U. Pietsch and T. Baumbach, High-Resolution X-Ray Scattering
    From Thin Films and Multilayers(Springer 1998)
    [68] Helmut Dosch, Critical Phenomena at Surfaces and Interfaces(
    Springer-Verlag 1992)
    [69] Yuko. Waseda, Anomalous X-Ray scattering for material characterization
    (Springer-Verlag 2002)
    [70] K. Namikawa, M. Ando, T. Nakajima, and H. Kawata, J. Phys. Soc.
    Japan, 54, 4099 (1985)
    [71] M. Blume, J. Appl. Phys, 57, 3615 (1985)
    [72] D. Gibbs, D. R. Harshman, E. D. Isaacs, D. B. McWhan, D. Mills and
    C. Vettier, Phys. Rev. Lett. 61 1241 (1988)
    [73] S. L. Chang, Multiple Diffraction of X-Rays in Crystals (Springer,
    Berlin, Heidelberg 1984)
    [74] P. B. Allen and V. Perebeinos, Nature 410, 155 (2001)
    [75] Y. Murakami, J. P. Hill, D. Gibbs, M. Blume, I. Koyama, M. Tanaka,
    H. Kawata, T. Arima, Y. Tokura, K. Hirota, and Y. Endoh, Phys. Rev.
    Lett. 81, 582 (1998)
    [76] Y. Murakami, H. Kawada, H. Kawata, M. Tanaka, T. Arima, Y. Moritomo,
    and Y. Tokura, Phys. Rev. Lett. 80, 1932 (1998)
    [77] I. S. Elfimov, V. I. AnPhys. Rev. Lett. 82, 4264 (1999)
    [78] M. Benfatto, Y. Joly and C. R. Natoli, Phys. Rev. Lett. 83, 636 (1999)
    [79] C. W. M. Castleton and M. Altarelli, Phys. Rev. B 62, 1033 (2000)
    [80] S. B. Wilkins, P. D. Spencer and P. D. Hatton, S. P. Collins, M. D.
    Roper, D. Prabhakaran and A. T. Boothroyd, Phys. Rev. Lett, 91,
    167205 (2003)
    [81] S. B. Wilkins, P. D. Hatton, M. D. Roper, D. Prabhakaran and A. T.
    Boothroyd, Phys. Rev. Lett, 90,187201 (2003)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE