簡易檢索 / 詳目顯示

研究生: 張軒銘
Chang, Hsuan-Ming
論文名稱: PLLA和PEO高分子混合物在奈米管柱中結晶行為之探討
Crystallization Behavior of Poly (L-lactic acid)/Poly(ethylene oxide) Blends Confined in Anodic Aluminum Oxide Nanochannels
指導教授: 陳信龍
Chen, Hsin-Lung
口試委員: 朱哲毅
Chu, Che-Yi
劉建良
Liu, Chien-Liang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 72
中文關鍵詞: 聚左乳酸聚氧化乙烯奈米孔陽極氧化鋁結晶方向侷限空間
外文關鍵詞: PLLA, PEO, AAO nanochannels, crystal orientation, spatial confinement
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高分子的性質和晶體的方向性有很大的關聯,然而透過精準的控制晶體方向性可以進一步的控制高分子的性質。然而根據先前的研究,有許多種方法可以控制結晶方向,其中藉由奈米模板提供一個侷限空間是一種相當有效率的方法。在這篇論文中將會探討高分子混合物在由奈米孔陽極氧化鋁 (AAO)所提供的二維侷限空間中的結晶行為和結晶方向。
    這篇論文中探討了PLLA和PEO的混合物在AAO中PLLA的結晶行為及結晶方向。不同比例的PLLA/PEO混合物是藉由將AAO基板泡進混合物溶液中,使其進入AAO的奈米孔洞,藉由這種方法高分子混合物會在其中呈現柱狀。然而藉由改變AAO孔洞的大小和PLLA/PEO混合物的結晶履歷觀察其結晶行為和結晶方向的變化。結晶行為是使用示差掃瞄熱量分析儀(DSC)來進行探討,其中我們發現PLLA在AAO中有比較好的結晶表現,此外添加微量的PEO也有助於PLLA結晶的形成;而結晶方向的部分是藉由同步輻射中心的廣角度X光散射儀所得之圖譜,藉由對圖譜中的PLLA[200/110]結晶峰進行方位掃描 (azimuthal scan)而得到的數據進一步的探討而得,在這個研究中我們PLLA結晶呈現三種方向,分別是平行、垂直和垂直且傾斜於管柱方向。我們發現在剛移除溶液的樣品在小尺寸的AAO會呈現水平方向,然而在大尺寸的則會呈現垂直方向;而經過非等溫結晶後純PLLA在100nm AAO中會呈現垂直和傾斜方向(傾斜角度為30度),然而在摻混PEO後,PLLA則只呈現垂直方向;而在經過等溫結晶之後,當等溫結度夠高,同樣也會呈現垂直和傾斜方向並存的情形。


    The control of crystal orientation provides a method to manipulate the properties of polymer. One of efficient methods to control the crystal orientation is through the use of nanoscale template. This thesis is dedicated to studying the crystallization behavior, in particular the preferred crystal orientation, of the crystalline polymer blends within the 2-D confined space templated by anodic alumina oxide (AAO) nanochannels.
    The crystal orientation and the crystallization behavior of Poly (L-lactic acid) (PLLA) developed in the PLLA/PEO blend confined in the AAO channels have been investigated. PLLA/PEO blends with various compositions were infiltrated into AAO channels by a solution method, which led to the rod morphology due to homogeneous filling of the nanopores. The effect of AAO channel diameter (DAAO) and crystallization condition on the crystal orientation have been revealed by synchrotron wide angle X-ray scattering (WAXS). The crystallization of PLLA was enhanced inside AAO channels compared to that in the bulk state. It was also found the mixing with PEO promoted the crystallization rate of PLLA even in the nanochannels. For the PLLA crystal orientation revealed by the azimuthal scan of the (200)/(110) peak in the 2D WAXS patterns, three modes of orientation, namely, parallel, perpendicular and tilt orientation have been identified. For the as-prepare samples, the smaller channel diameter (DAAO= 23 nm) led to parallel orientation, whereas larger pore diameter (DAAO= 89 nm) resulted in perpendicular orientation. Nonisothermal melt crystallization inside the AAO channels with DAAO= 89 nm gave rise to the existence of the perpendicular orientation and a tilt orientation with the crystallites tilting 30° away from the channel axis. However after blending with PEO, PLLA only displayed the perpendicular crystal orientation under nonisothermal crystallization condition. For the samples going through isothermally crystallization, both perpendicular and tilt orientation were observed when the crystallization temperature was sufficiently high.

    Abstract I 摘要 III Table of Contents I List of Figures III List of Tables VIII Chapter 1 Introduction 1 1-1Background 1 1-2 Spatial confinement 2 1-3 Crystallization behavior of polymer confined in AAO nanochannels 6 1-3-1 Crystallization kinetic of polymer confined in AAO channels 7 1-3-2 Crystal Orientation of polymer confined in AAO channels 10 1-4 Miscibility of the PLLA/PEO blends 18 1-5 Motivation and objectives of research 20 Chapter 2 Experimental section 21 2-1 Material 21 2-2 Sample preparation 21 2-3 Scanning Electron microscopy (SEM) observation 22 2.4 Differential Scanning Calorimetry (DSC) Measurements 22 2-5 Wide angle X-ray scattering experiment 23 Chapter 3 Results and Discussion 24 3-1 Geometric identity of PLLA/PEO blends inside AAO channels 24 3-2 Crystallization behavior of PLLA in PLLA/PEO blends confined in AAO nanochannels 29 3-3 Orientation of PLLA crystallites developed in PLLA/PEO blends confined in AAO channels 37 3-3-1 PLLA crystal orientation in the as-prepared samples 40 3-3-2 Crystal orientation of PLLA/PEO blends subjected to non-isothermal crystallization 45 3-3-3 Crystal orientation of PLLA/PEO blend subjected to isothermal crystallization 51 3-3-3-1 Crystallization temperature= 135°C 51 3-3-3-2 Crystallization temperature= 130°C 56 3-3-3-3 Crystallization temperature= 100°C 61 3-3-4 Summary of PLLA crystal orientation in PLLA/PEO blends confined in AAO nanochannels 66 Chapter 4 Conclusion 69 Chapter 5 Reference 71

    1. D. Li and Y. N. Xia, Adv. Mater., 2004, 16, 1151-1170
    2. Y. Liu et al., Macromolecules, 2007, 40, 6283-6290
    3. Z. J. Hu et al., Nat. Mater., 2009, 8, 62-67
    4. K. Honda et al., Soft Matter, 2010, 6, 870-875
    5. H. Q. Xiang et al. Science, 2004, 306, 76-76
    6. P. Dobriyal et al. Macromolecules, 2009, 42, 9082-9088
    7. Y. Guan et al. Macro Lett. 2013, 2, 181-184
    8. Y. Guan et al. Macromolecules 2015, 48, 2526-2533
    9. H. Duran et al. Nano Lett.2011, 11, 1671-1675
    10. B. Y. Cao et al. , Polymer, 2011, 52, 1711-1715
    11. K. Shin et al., Nat. Mater., 2007, 6, 961-965
    12. Sun et al Polymer 2004, 45, 2931-2939
    13. Shin et al Macromolecules 2007, 40, 6617-6623
    14. Zhu et al J. Am. Chem. Soc. 2000, 122, 5957-5967
    15. P. Dobriyal et al Macromolecules 2009, 42, 9082-9088
    16. J. Maiz et al Langmuir 2012, 28, 12296-12303
    17. X. She et al. Polym. J 2006, 38(7), 639-642
    18. M. Pasquali, J. Liang and S. Shivkumar Nanotechnology 2011,22
    19. J. T. Chen et al. Macromolecular Rapid Communications 2013, 34(4), 348-354
    20. R. Michell et al. Macromoleculars 2012, 45(3), 1517-1528
    21. X. Dai et al. The journal of physical chemistry B 2016,120(4), 843-850
    22. R. Michell et al. Polymer 2013, 54(16), 4059-4077
    23. M. Steinhart et al. Macromolecules 2003, 36(10), 3646-3651
    24. K. Shin et al. Macromolecules 2004, 37(15), 5660-5664
    25. Y. Guan et al. Macromolecules 2015, 48, 2526-2533
    26. H. Wu et al. Macromolecules 2007, 40(12), 4244-4249
    27. Y. Wu et al. ACS Macro Letters 2013, 2(6), 535-538
    28. Martin-Fabiani, I et al. ACS Applied Materials and Interfaces 2013, 5(11), 5324-5329
    29. M. Aryal, K. Trivedi and W. Hu ACS Nano 2009, 3(10), 3085-3090
    30. J. Martin et al. Soft Matter 2014, 10(18), 3335-3346
    31. L.B. Huang et al. ACS Applied Materials and interfaces 2014, 6(15), 11874-11881
    32. C. L. Liu and H. L. Chen Macromolecules 2017, 50, 631-641
    33. H. Wu , Z. H. Su and A. Takahara RSC Adv, 2012, 2, 8707-8712
    34. W. C. Lai, W. B. Liau and L. Y. Yang J. Appl. Polym. Sci.,2008,110 (6), 3616-3623
    35. W. C. Lai, W. B. Liau and T. T. Lin Polymer , 2004, 45 (9), 3073-3080
    36. A. J. Nijenhuis et al. Polymer 1996, 37, 5849-5857.
    37. C. Nakafuku and M. Sakoda Polym J 1993, 25, 909-917
    38. J. M. Yang, H. L. Chen, J. W. You and J. C. Hwang, Polym. J., 1997, 29, 657-662
    39. Y. Xu, W. Yu and C. Zhou RSC Adv., 2014, 4 (98), 55435-55444
    40. G. Sun et al. Polymer, 2014,55(7), 1829-1836
    41. R. Bao et al. ACS Sustainable Chem. Eng. , 2014, 2 (10), 2301-2309
    42. H. Younes and D. Cohn Eur Polym J 1988, 24, 765-773
    43. C. Nakafuku Polym J 1996, 28, 568-575
    44. J. M. Yang et al. Polymer Journal, 1997, Vol. 29, No. 8, 657-662

    QR CODE