研究生: |
羅錦泰 Luo, Jin-Tai |
---|---|
論文名稱: |
耐火高熵合金高溫抗氧化鍍層之開發研究 Development of oxidation-resistant coating for refractory high-entropy alloys |
指導教授: |
葉均蔚
Yeh, Jien-Wei |
口試委員: |
洪健龍
Hong, Jian-Long 楊智超 Yang, Zhi-Chao 曹春暉 Tsau, Chun-Huei |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 221 |
中文關鍵詞: | 耐火高熵合金 、高溫抗氧化鍍層 |
外文關鍵詞: | refractory high-entropy alloys, oxidation-resistant coating |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以五元或五元以上等莫耳元素組成之高熵合金設計概念已受國內外矚目,漸漸成為學術界爭相研究的目標。從2010年美國空軍實驗室開始發表一系列耐火高熵合金,第一組 NbTaMoW、VNbTaMoW,具有優異的高溫壓縮強度 (1600 °C 時為 477 MPa),缺點為室溫延性不佳且密度過高,不利於實際應用,隨後又發表第二組耐火高熵合金 HfNbTaTiZr,其室溫壓縮塑性應變量大於50%,具有很好的延性,而在之後研究中,也逐漸提升其在高溫上的使用程度,增加此款合金在航太材料上未來使用的可能性。
本實驗室亦對耐火高熵合金系統做了多年的研究,在中高溫段的合金系統與極高溫段的合金運用領域,在機械性質與高溫強度有了極大的突破,但在抗高溫氧化性質上仍然受到限制,並且合金在中高溫區段會產生氧化物粉末嚴重剝落之蟲咬現象,限制其應用性,並且無法以合金化的方式來進行改良,因其改善效果有限並會對本身合金的基本性質造成影響,因此在合金表面鍍製抗氧化層為較可行之解決方法。
在本次研究中,以張政泓學長所開發改良之 M 合金作為基材,雖然該合金在其應用溫度 700 °C、800 °C、900 °C 氧化 24 小時內即造成嚴重的破壞,但本研究利用新開發的處理製程,可使合金在 700 °C、800 °C、900 °C 氧化經歷 100 小時仍未產生破壞,大幅提升其應用性。此外,本研究亦對原合金及表面處理後的氧化行為及微結構做深入探討,並瞭解其改進的機制。
High-entropy alloys (HEAs) are defined as the alloys composed of at least five principle elements. Among them, refractory high entropy alloys (RHEAs) are promising candidates for aerospace structural materials due to their superb high-temperature strength and great mechanical property. However, the poor oxidation resistance, mainly owing to the formation of non-protective oxide scale has severely limited the capabilities of these alloys in applications. Furthermore, an accelerated oxidation or more specifically, pesting, in the temperature range of 700-800 °C has been observed for RHEAs, where the oxidation leads the material to catastrophically disintegrate into powders. To improve their oxidation resistance, alloying elements such as Al, Cr, Si in RHEAs has been studied, whereas the improvements are extremely restricted as these alloying elements may lead to deterioration of mechanical property of the alloys. As the result, the protective coating is necessary for their practical application in high temperature.
In this study, various surface treatments are developed for M alloy. The coated specimens have been verified to possess much lower mass gain than the base alloy after exposure of 100 hours at 700, 800 and 900 °C. This significantly improves the oxidation resistance amd let refractory high entropy alloys have potential applications at high tempeartures. In addition, the oxidation behavior and microstructure are studied and the mechanism of oxidation improvement is revealed.
1. He, Y., T. Shen, and R. Schwarz, Bulk amorphous metallic alloys: synthesis by fluxing techniques and properties. Metallurgical and Materials Transactions A, 1998. 29(7): pp. 1795-1804.
2. Inoue, A., Bulk Amorphous Alloys, Vol. 2. Trans Tech Publications, Zurich, 1999: pp. 28-35.
3. Inoue, A. and J.S. Gook, Multicomponent Fe-based glassy alloys with wide supercooled liquid region before crystallization. Materials Transactions, JIM, 1995. 36(10): pp. 1282-1285.
4. Inoue, A., et al., An amorphous La55Al25Ni20 alloy prepared by water quenching. Materials Transactions, JIM, 1989. 30(9): pp. 722-725.
5. Inoue, A., et al., Mg–Cu–Y bulk amorphous alloys with high tensile strength produced by a high-pressure die casting method. Materials Transactions, JIM, 1992. 33(10): pp. 937-945.
6. Inoue, A., et al., Bulky La–Al–TM (TM= transition metal) amorphous alloys with high tensile strength produced by a high-pressure die casting method. Materials Transactions, JIM, 1993. 34(4): pp. 351-358.
7. Inoue, A. and N. Nishiyama, Extremely low critical cooling rates of new Pd-Cu-P base amorphous alloys. Materials Science and Engineering: A, 1997. 226: pp. 401-405.
8. Inoue, A., N. Nishiyama, and H. Kimura, Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72 mm in diameter. Materials Transactions, JIM, 1997. 38(2): pp. 179-183.
9. Inoue, A., N. Nishiyama, and T. Matsuda, Preparation of bulk glassy Pd40Ni10Cu30P20 alloy of 40 mm in diameter by water quenching. Materials Transactions, JIM, 1996. 37(2): pp. 181-184.
10. Inoue, A., et al., New amorphous alloys with good ductility in Al-Ce-M (M= Nb, Fe, Co, Ni or Cu) systems. Japanese Sournal of Applied Physics, 1988. 27(10A): pp. L1796.
11. Inoue, A. and T. Zhang, Fabrication of bulk glassy Zr55Al10Ni5Cu30 alloy of 30 mm in diameter by a suction casting method. Materials Transactions, JIM, 1996. 37(2): pp. 185-187.
12. Inoue, A., T. Zhang, and T. Masumoto, Zr–Al–Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region. Materials Transactions, JIM, 1990. 31(3): pp. 177-183.
13. Inoue, A., et al., Continuous-Cooling-Transformation (CCT) Curves for Zr–Al–Ni–Cu Supercooled Liquids to Amorphous or Crystalline Phase (Rapid Publication). Materials Transactions, JIM, 1995. 36(7): pp. 876-878.
14. Inoue, A., T. Zhang, and A. Takeuchi, Bulk amorphous alloys with high mechanical strength and good soft magnetic properties in Fe–TM–B (TM= IV–VIII group transition metal) system. Applied Physics Letters, 1997. 71(4): p. 464-466.
15. Masumoto, T., et al., Amorphous alloys having superior processability. 1991, U.S. Patent 5032196. 1991
16. Peker, A. and W.L. Johnson, A highly processable metallic glass: Zr41. 2Ti13. 8Cu12. 5Ni10. 0Be22. 5. Applied Physics Letters, 1993. 63(17): pp. 2342-2344.
17. Zhang, T. and A. Inoue, Thermal and mechanical properties of Ti–Ni–Cu–Sn amorphous alloys with a wide supercooled liquid region before crystallization. Materials Transactions, JIM, 1998. 39(10): pp. 1001-1006.
18. Zhang, T. and A. Inoue, Preparation of Ti–Cu–Ni–Si–B amorphous alloys with a large supercooled liquid region. Materials Transactions, JIM, 1999. 40(4): pp. 301-306.
19. Louzguine, D.V. and A. Inoue, Formation of nanocrystalline nuclei in the amorphous phase of Ge55Al30Cr10Y5 alloy. Materials Letters, 1999. 39(4): pp. 211-214.
20. Szewieczek, D., J. Tyrlik-Held, and S. Lesz, Changes of mechanical properties and fracture morphology of amorphous tapes involved by heat treatment. Journal of Materials Processing Technology, 2001. 109(1-2): pp. 190-195.
21. Xing, L., et al., Nanocrystal evolution in bulk amorphous Zr57Cu20Al10Ni8Ti5 alloy and its mechanical properties. Materials Science and Engineering: A, 1998. 241(1-2): pp. 216-225.
22. Yeh, J.W., et al., Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004. 6(5): pp. 299-303.
23. Cheng, K.-H., et al. Recent progress in multi-element alloy and nitride coatings sputtered from high-entropy alloy targets. in Annales de chimie. 2006. Lavoisier.
24. 李立陽, 耐火高熵合金Al-Mo-Nb-Ta-Ti-Zr 添加Si與Ni對微結構及性質影響之研究.
25. 阮建彰, Hf-Mo-Nb-Ta-Ti-Zr耐火高熵合金之微結構及機械性質探討.
26. 洪奕平, Si 添加對 Al-Hf-Nb-Ta-Ti-Zr 耐火高熵合金性質之影響.
27. 張政泓, 耐火高熵合金Mo-Nb-Ti-Zr添加Al、Cr與Si對微結構及性質之影響.
28. 張嘉修, 耐火高熵合金AlxHfNbTaTiZr(x=0, 0.3, 0.5, 0.75, 1.0)之研究.
29. 蔡孟哲, 耐火高熵合金Al-Hf-Mo-Nb-Ta-Ti-Zr添加 Cr與Si對微結構及性質影響之研究.
30. Huang, P.K., et al., Multi‐principal‐element alloys with improved oxidation and wear resistance for thermal spray coating. Advanced Engineering Materials, 2004. 6(1‐2): pp. 74-78.
31. Geddes, B., H. Leon, and X. Huang, Superalloys: alloying and performance. 2010: Asm International.
32. Perepezko, J.H., The hotter the engine, the better. Science, 2009. 326(5956): pp. 1068-1069.
33. Sims, C.T. and W. Hagel, The Superalloys, J. Wiley and Sons, Inc, 1972.
34. Bewlay, B., et al., A review of very-high-temperature Nb-silicide-based composites. Metallurgical and Materials Transactions A, 2003. 34(10): pp. 2043-2052.
35. Yeh, J.-W., et al., Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metallurgical and Materials Transactions A, 2004. 35(8): pp. 2533-2536.
36. 蔡哲瑋, CuCoNiCrAlxFe高熵合金加工變形及微結構之探討.
37. 張慧紋, 以反應式直流濺鍍法製備Al-Cr-Mo-Si-Ti高熵氮化物薄膜及其性質探討.
38. 黃炳剛, 多元高熵合金於熱熔射塗層之研究.
39. 賴高廷, 高亂度合金微結構及性質探討.
40. 陳宣佑, Al-Cr-Cu-Fe-Mn-Ni高熵合金變形及退火行為之研究.
41. 郭彥甫, Al-Cr-Fe-Mn-Ni高熵合金變形及退火行為之研究.
42. 鄭耿豪, 利用射頻磁控濺鍍法製備高熵合金氮化物硬質薄膜.
43. Senkov, O., et al., Refractory high-entropy alloys. Intermetallics, 2010. 18(9): pp. 1758-1765.
44. Senkov, O., et al., Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 2011. 19(5): pp. 698-706.
45. Senkov, O., et al., Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. Journal of Materials Science, 2012. 47(9): pp. 4062-4074.
46. Senkov, O., et al., Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. Journal of Alloys and Compounds, 2011. 509(20): pp. 6043-6048.
47. Senkov, O. and C. Woodward, Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy. Materials Science and Engineering: A, 2011. 529: pp. 311-320.
48. Senkov, O., et al., Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system. Materials Science and Engineering: A, 2013. 565: pp. 51-62.
49. Senkov, O., et al., Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis. Acta Materialia, 2013. 61(5): pp. 1545-1557.
50. Senkov, O., S. Senkova, and C. Woodward, Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Materialia, 2014. 68: pp. 214-228.
51. Bianco, R. and R.A. Rapp, Pack cementation diffusion coatings, in Metallurgical and ceramic protective coatings. 1996, Springer. pp. 236-260.
52. Galetz, M.C., Coatings for superalloys, in Superalloys. 2015, InTech.
53. Zhang, P. and X. Guo, A comparative study of two kinds of Y and Al modified silicide coatings on an Nb–Ti–Si based alloy prepared by pack cementation technique. Corrosion Science, 2011. 53(12): pp. 4291-4299.
54. Su, L., et al., An ultra-high temperature Mo–Si–B based coating for oxidation protection of NbSS/Nb5Si3 composites. Applied Surface Science, 2015. 337: p. 38-44.
55. Tsai, C.-W., et al., Isothermal Oxidation of Aluminized Coatings on High-Entropy Alloys. Entropy, 2016. 18(10): pp. 376.
56. Perepezko, J., et al., Oxidation resistant coatings for refractory metal cermets. Surface and Coatings Technology, 2012. 206(19-20): pp. 3816-3822.
57. Douglass, D., The thermal expansion of niobium pentoxide and its effect on the spalling of niobium oxidation films. Journal of the Less Common Metals, 1963. 5(2): pp. 151-157.
58. Tolpygo, V. and H. Grabke, Mechanism of the intergranular disintegration (pest) of the intermetallic compound NbAl3. Scripta Metallurgica et Materialia, 1993. 28(6): pp. 747-752.
59. Brinker, C.J. and G. Scherer, Sol-gel sciences. The Processing and the Chemistry of Sol-Gel Processing, 1990.