研究生: |
彭柏欣 Peng, Po-Hsin |
---|---|
論文名稱: |
台灣蝴蝶蘭之低溫逆境反應和PaCBF1和PaICE1表現的分析 Cold response in Phalaenopsis aphrodite and characterization of PaCBF1 and PaICE1 |
指導教授: | 林彩雲 |
口試委員: |
曾夢蛟
黃鎮剛 楊明德 楊長賢 |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 91 |
中文關鍵詞: | 低溫逆境 、臺灣白花蝴蝶蘭 |
外文關鍵詞: | C-repeat binding factor, dyhydrin, inducer of CBF expression, MYC motif, Phalaenopsis aphrodite |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
蝴蝶蘭為一種冬天開花的蘭科植物,廣泛栽培於亞洲許多熱帶國家。由於蝴蝶蘭是台灣主要經濟花卉之一,故在低溫等逆境下蝴蝶蘭生理及基因調控具有進一步研究之重要性。這篇論文主要探討臺灣白花蝴蝶蘭 (P. aphrodite) 對低溫及其他非生物逆境的反應,由我們的實驗結果得知臺灣白花蝴蝶蘭對低溫敏感,尤其在植株開花期,4°C處理的生長期植株比開花期植株葉片細胞膜穩定且光合作用效率較高。在分子層面,低溫誘導C-repeat binding factor1 (PaCBF1) 基因及可能受其調控的下游基因dehydrin1 (PaDHN1) mRNAs累積,但inducer of CBF expression1 (PaICE1) 的mRNA則持續表現。PaICE1可活化PaCBF1啟動子及存在該區域的MYC motifs,推測PaICE1可能藉由MYC motifs調控PaCBF1;PaCBF1在低溫下可活化PaDHN1啟動子,顯示PaCBF1可能參與低溫調控PaDHN1的表現。在未受低溫刺激的環境,大量表現PaCBF1基因的轉殖阿拉伯芥相較於野生型具有較高的逆境基因COR6.6及RD29a表現量,且在低溫處理後維持較好的細胞膜完整性。在此篇論文中我們提供證據說明在蘭科植物低溫逆境經由PaICE1蛋白調控PaCBF1基因表現,並誘導DHN等cold-regulated (COR) 基因表現達到降低低溫傷害,就我們所知這也是第一篇從蘭科植物選殖並分析CBF、DHN及ICE基因的論文。
Phalaenopsis is a winter-blooming orchid genus commonly cultivated in tropical Asian countries. Because orchid is one of the most economically important flower crops in Taiwan, it is crucial to understand its response to cold and other abiotic stresses. The present study focused on gene regulation of P. aphrodite in response to abiotic stress, mainly cold. Our results demonstrate that P. aphrodite is sensitive to low temperatures, especially in its reproductive stage. We found that after exposure to 4°C, plants in the vegetative stage maintained better membrane integrity and photosynthetic capacity than in the flowering stage. At the molecular level, C-repeat binding factor1 (PaCBF1) and its putative target gene dehydrin1 (PaDHN1) mRNAs were induced by cold, whereas inducer of CBF expression1 (PaICE1) mRNAs were constitutively expressed. PaICE1 transactivated MYC motifs in the PaCBF1 promoter, indicating that up-regulation of PaCBF1 may be mediated by the binding of PaICE1 to MYC motifs. PaCBF1 transactivated PaDHN1 at cold treatment, suggesting PaCBF1 was involved in the cold-regulation of PaDHN1. Overexpression of PaCBF1 in transgenic Arabidopsis induced AtCOR6.6 and RD29a without cold stimulus and maintain better membrane integrity after cold stress. Herein, we present evidence that cold induction of PaCBF1 transcripts in P. aphrodite may be transactivated by PaICE1 and consequently protect plants from cold damage through up-regulation of cold-regulated (COR) genes, such as DHN. To our knowledge, this study is the first report of isolation and characterization of CBF, DHN and ICE genes in the Orchidaceae family.
Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15: 63–78.
Agarwal, M., Hao, Y.J., Kapoor, A., Dong, C.H., Fujii, H., Zheng, X. et al. (2006) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J. Biol. Chem. 281: 37636–37645.
Airaki, M., Leterrier, M., Mateos, R.M., Valderrama, R., Chaki, M., Barroso, J.B. et al. (2012) Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperature stress. Plant Cell Environ. 35: 281–295.
Allen, D.J. and Ort, D.R. (2001) Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci. 6: 36–42.
Badawi, M., Reddy, Y.V., Agharbaoui, Z., Tominaga, Y., Danyluk, J., Sarhan, F. et al. (2008) Structure and functional analysis of wheat ICE (inducer of CBF expression) genes. Plant Cell Physiol. 49: 1237–1249.
Baker, S.S., Wilhelm, K.S. and Thomashow, M.F. (1994) The 5'-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol. Biol. 24: 701–713.
Björkman, O. and Demmig, B. (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170: 489–504.
Bowler, C., Vanmontagu, M. and Inze, D. (1992) Superoxide-dismutase and stress tolerance. Annu. Rev. Plant Phys. 43: 83–116.
Bunce, J.A. (2007) Direct and acclimatory responses of dark respiration and translocation to temperature. Ann. Bot. 100: 67–73.
Catala, R., Ouyang, J., Abreu, I.A., Hu, Y., Seo, H., Zhang, X. et al. (2007) The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. Plant cell. 19: 2952–2966.
Chang, C.H., Lee, N. and Chang, T.H. (2003) Flower and bud wilting of potted Phalaenopsis caused by ethylene and darkness. J. Chinese Soc. Hort. Sci. 49: 173–182.
Chen, L.R., Chen, Y.J., Lee, C.Y., Lin, T.Y. (2007) MeJA-induced transcriptional changes in adventitious roots of Bupleurum kaoi. Plant Sci. 173: 12–24.
Chen, L.R., Markhart, A.H., Shanmugasundaram, S. and Lin, T.Y. (2008) Early developmental and stress responsive ESTs from mungbean, Vigna radiata (L.) Wilczek, seedlings. Plant Cell Rep. 27: 535–552.
Chen, L., Chen, Y., Jiang, J., Chen, S., Chen, F., Guan, Z. et al. (2012) The constitutive expression of Chrysanthemum dichrum ICE1 in Chrysanthemum grandiflorum improves the level of low temperature, salinity and drought tolerance. Plant Cell Rep. 31: 1747–1758.
Chinnusamy, V., Ohta, M., Kanrar, S., Lee, B.H., Hong, X.H., Agarwal, M. et al. (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev. 17: 1043–1054.
Chinnusamy, V., Zhu, J. and Zhu J.K. (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci. 12:444-451.
Choi, D.W., Rodriguez, E.M. and Close, T.J. (2002) Barley Cbf3 gene identification, expression pattern, and map location. Plant Physiol. 129: 1781-1787.
Christenson, E.A. (2001) Phalaenopsis: a Monograph p. 197. Timber Press, Portland.
Close, T.J. (1997) Dehydrins: a commonality in the response of plants to dehydration and low temperature. Physiol Plantarum 100: 291-296.
Clough, S.J. and Bent, A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735–743.
Danyluk, J., Perron, A., Houde, M., Limin, A., Fowler, B., Benhamou, N. et al. (1998) Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10: 623–638.
Dong, C.H., Agarwal, M., Zhang, Y.Y., Xie, Q. and Zhu, J.K. (2006) The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc. Natl. Acad. Sci. USA 103: 8281–8286.
Dubouzet, J.G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E.G., Miura, S. et al. (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J. 33: 751–763.
Endo, M. and Ikusima, I. (1989) Diurnal rhythm and characteristics of photosynthesis and respiration in the leaf and root of a Phalaenopsis plant. Plant Cell Physiol. 30: 43–47.
Ferrante, A. and Maggiore, T. (2007) Chlorophyll a fluorescence measurements to evaluate storage time and temperature of Valeriana leafy vegetables. Postharvest Biol. Tec. 45: 73–80.
Ferré-D'Amaré, A.R., Prendergast, G.C., Ziff, E.B. and Burley, S.K. (1993) Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature 363: 38–45.
Fujimoto, S.Y., Ohta, M., Usui, A., Shinshi, H. and Ohme-Takagi, M. (2000) Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12: 393–404.
Fursova, O.V., Pogorelko, G.V. and Tarasov, V.A. (2009) Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana. Gene 429: 98–103.
Georlette, D., Blaise, V., Collins, T., D'Amico, S., Gratia, E., Hoyoux, A. et al. (2004) Some like it cold: biocatalysis at low temperatures. FEMS Microbiol. Rev. 28: 25–42.
Gilmour, S.J., Zarka, D.G., Stockinger, E.J., Salazar, M.P., Houghton, J.M. and Thomashow, M.F. (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J. 16: 433–442.
Gilmour, S.J., Sebolt, A.M., Salazar, M.P., Everard, J.D. and Thomashow, M.F. (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol. 124: 1854–1865.
Gulick, P.J. and Dvorák, J. (1992) Coordinate gene response to salt stress in Lophopyrum elongatum. Plant Physiol. 100: 1384–1388.
Haake, V., Cook, D., Riechmann, J.L., Pineda, O., Thomashow, M.F. and Zhang, J.Z. (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol. 130: 639−648.
Hattori, T., Vasil, V., Rosenkrans, L., Hannah, L.C., McCarty, D.R., and Vasil, I.K. (1992) The viviparous-7 gene and abscisic acid activate the C7 regulatory gene for anthocyanin biosynthesis during seed maturation in maize. Genes Dev. 6: 609–618.
Higo, K., Ugawa, Y., Iwamoto, M. and Korenaga, T. (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res. 27: 297–300.
Hinniger, C., Caillet, V., Michoux, F., Ben, Amor M., Tanksley, S., Lin, C. et al. (2006) Isolation and characterization of cDNA encoding three dehydrins expressed during Coffea canephora (Robusta) grain development. Ann Bot. 97: 755−765.
Hong, J.P. and Kim, W.T. (2005) Isolation and functional characterization of the Ca-DREBLP1 gene encoding a dehydration-responsive element binding-factor-like protein 1 in hot pepper (Capsicum annuum L. cv. Pukang). Planta 220: 875−888.
Horde, M., Dallaire, S., N'Dong, D. and Sarhan, F. (2004) Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotechnol. J. 2: 381−387.
Huang, B., Jin, L. and Liu, J. (2007) Molecular cloning and functional characterization of a DREB1/CBF-like gene (GhDREB1L) from cotton. Sci. China C. Life Sci. 50: 7-14.
Hundertmark, M. and Hincha, D.K. (2008). LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics. 9: 118.
Jaglo, K.R., Kleff, S., Amundsen, K.L., Zhang, X., Haake, V., Zhang, J.Z. et al. (2001) Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol. 127: 910–917.
Jaglo-Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O. and Thomashow, M.F. (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280: 104–106.
Jiménez, J.A., Alonso-Ramírez, A. And Nicolás, C. (2008) Two cDNA clones (FsDhn1 and FsClo1) up-regulated by ABA are involved in drought responses in Fagus sylvatica L. seeds. J Plant Physiol. 165:1798−1807.
Jin, J.B., Jin, H., Lee, J., Miura, K., Yoo, C.Y., Kim, W.Y. et al. (2008) The SUMO E3 ligase, AtSIZ1, regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure. Plant J. 53: 530–540.
Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol. 17: 287–291.
Kataoka, K., Sumitomo, K., Fudano, T. and Kawase, K. (2004) Changes in sugar content of Phalaenopsis leaves before floral transition. Sci. Hortic. (Amsterdam). 102: 121–132.
Kazan, K. and Manners, J.M. (2013) MYC2: the master in action. Mol Plant. 6: 686–703.
Kim, Y.H., Yang, K.S., Ryu, S.H., Kim, K.Y., Song, W.K., Kwon, S.Y. et al. (2008) Molecular characterization of a cDNA encoding DRE-binding transcription factor from dehydration-treated fibrous roots of sweetpotato. Plant Physiol. Biochem. 46: 196−204.
Kiyosue, T., Yamaguchi-Shinozaki, K. and Shinozaki, K. (1994) Characterization of two cDNAs (ERD10 and ERD14) corresponding to genes that respond rapidly to dehydration stress in Arabidopsis thaliana. Plant Cell Physiol. 35: 225−231.
Kosugi, S., Hasebe, M., Tomita, M., and Yanagawa, H. (2009) Systematic identification of yeast cell cycle-dependent nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc. Natl. Acad. Sci. USA 106: 10171–10176.
Krasensky, J. and Jonak, C. (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot. 63:1593–1608.
Krause, G.H. and Weis, E. (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu. Rev. Plant Physiol. 42: 313–349.
Lång, V. and Palva, E.T. (1992) The expression of a rab-related gene, rab18, is induced by abscisic acid during the cold acclimation process of Arabidopsis thaliana (L.) Heynh. Plant Mol. Biol. 20: 951–962.
Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H. et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948.
Lata, C. and Prasad, M. (2011) Role of DREBs in regulation of abiotic stress responses in plants. J. Exp. Bot. 62: 4731–4748.
Lee, H., Xiong, L., Ishitani, M., Stevenson, B. and Zhu, J.K. (1999) Cold-regulated gene expression and freezing tolerance in an Arabidopsis thaliana mutant. Plant J. 17: 301–308.
Lee, H.C., Chen, Y.J., Markhart, A.H. and Lin, T.Y. (2007) Temperature effects on systemic endoreduplication in orchid during floral development. Plant Sci. 172: 588–595.
Lee, J., Nam, J., Park, H.C., Na, G., Miura, K., Jin, J.B. et al. (2007) Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase. Plant J. 49: 79–90.
Li, H., Sun, J., Xu, Y., Jiang, H., Wu, X. and Li, C. (2007) The bHLH-type transcription factor AtAIB positively regulates ABA response in Arabidopsis. Plant Mol Biol. 65: 655–665.
Li, Z., Zhang, L., Li, J., Xu, X., Yao, Q. and Wang, A. (2014) Isolation and functional characterization of the ShCBF1 gene encoding a CRT/DRE-binding factor from the wild tomato species Solanum habrochaites. Plant Physiol. Biochem. 74: 294–303.
Lin, C.H., Peng, P.H., Ko, C.Y., Markhart, A.H. and Lin, T.Y. (2012) Characterization of a novel Y2K-type dehydrin VrDhn1 from Vigna radiata. Plant Cell Physiol. 53: 930–942.
Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K. et al. (1998) Two transcription factors, DREB1 and DREB2, with an AP2/ERF DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10: 1391–1406.
Livak K.J. and Schmittgen T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. Methods. 25: 402–408
Lyons, J.M. (1973) Chilling Injury in Plants. Annu. Rev. Plant Physiol. 24: 445–466.
Matus, J.T., Poupin, M.J., Cañón, P., Bordeu, E., Alcalde, J.A. and Arce-Johnson, P. (2010) Isolation of WDR and bHLH genes related to flavonoid synthesis in grapevine (Vitis vinifera L.). Plant Mol Biol. 72(6): 607–620.
Meng, C.M., Zhang, T.Z., and Guo, W.Z. (2009) Molecular cloning and characterization of a novel Gossypium hirsutum L. bHLH gene in response to ABA and dought stresses. Plant Mol. Biol. Rep. 27: 381–387.
Meshi, T. and Iwabuchi, M. (1995) Plant transcription factors. Plant Cell Physiol. 36: 1405–1420.
Miura, K., Jin, J.B., Lee, J., Yoo, C.Y., Stirm, V., Miura, T. et al. (2007) SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19: 1403–1414.
Miura, K., Lee, J., Jin, J.B., Yoo, C.Y., Miura, T. and Hasegawa, P.M. (2009) Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling. Proc. Natl. Acad. Sci. USA 106: 5418–5423.
Miura, K., Ohta, M., Nakazawa, M., Ono, M. and Hasegawa, P.M. (2011) ICE1 Ser403 is necessary for protein stabilization and regulation of cold signaling and tolerance. Plant J. 67: 269–279.
Miura, K., and Furumoto, T. (2013) Cold signaling and cold response in plants. Int J Mol Sci. 14: 5312–5337.
Nair, R. and Rost, B. (2005) Mimicking cellular sorting improves prediction of subcellular localization. J. Mol. Biol. 348: 85–100.
Nakai, K. and Kanehisa, M. (1992) A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14: 897–911.
Nakashima, K., Shinwari, Z.K., Sakuma, Y., Seki, M., Miura, S., Shinozaki, K. et al. (2000) Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression. Plant Mol Biol. 42: 657–65.
Nguyen Ba, A.N., Pogoutse, A., Provart, N. and Moses, A.M. (2009) NLStradamus: a simple Hidden Markov Model for nuclear localization signal prediction. BMC Bioinformatics 10: 202–212.
Novillo, F., Alonso, J.M., Ecker, J.R. and Salinas, J. (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc. Natl. Acad. Sci. USA 101: 3985–3990.
Nylander, M., Svensson, J., Palva, E.T. and Welin, B.V. (2001) Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol Biol. 45: 263–279.
Ohgishi, M., Oka, A., Morelli, G., Ruberti, I. and Aoyama, T. (2001) Negative autoregulation of the Arabidopsis homeobox gene ATHB-2. Plant J. 25: 389–398.
Omar, S.A., Elsheery, N.I., Kalaji, H.M., Ebrahim, M.K., Pietkiewicz, S., Lee, C.H. et al. (2013) Identification and differential expression of two dehydrin cDNAs during maturation of Jatropha curcas seeds. Biochemistry (Mosc) 78: 485–495.
Omidvar, V., Abdullah, S.N., Ho, C.L., Mahmood, M., and Al-Shanfari, A.B. (2012) Isolation and characterization of two ABRE-binding proteins: EABF and EABF1 from the oil palm. Mol Biol Rep. 39: 8907–8918.
Park, H.C., Kim, M.L., Kang, Y.H., Jeon, J.M., Yoo, J.H., Kim, M.C. et al. (2004) Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol. 135: 2150–2161.
Pearce, R.S. (2001) Plant Freezing and Damage. Ann. Bot. 87: 417–424.
Pennycooke, J.C., Cheng, H., Roberts, S.M., Yang, Q., Rhee, S.Y. and Stockinger, E.J. (2008) The low temperature-responsive, Solanum CBF1 genes maintain high identity in their upstream regions in a genomic environment undergoing gene duplications, deletions, and rearrangements. Plant Mol. Biol. 67: 483−497.
Pires, N. and Dolan, L. (2010) Origin and diversification of basic-helix-loop-helix proteins in plants. Mol. Biol. Evol. 27: 862–874.
Puhakainen, T., Hess, M.W., Mäkelä, P., Svensson, J., Heino, P. and Palva, E.T. (2004) Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol. Biol. 54: 743–753.
Punta, M., Coggill, P.C., Eberhardt, R.Y., Mistry, J., Tate, J., Boursnell, C. et al. (2012) The Pfam protein families database. Nucl. Acids Res. 40: D290–D301.
Qin, F., Sakuma, Y., Li, J., Liu, Q., Li, Y.Q., Shinozaki, K. et al. (2004) Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol. 45: 1042–1052.
Rampino, P., Pataleo, S., Gerardi, C., Mita, G. and Perrotta, C. (2006) Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes. Plant Cell Environ. 29: 2143–2152.
Ren, J., Gao, X., Jin, C., Zhu, M., Wang, X., Shaw, A. et al. (2009) Systematic study of protein sumoylation: Development of a site-specific predictor of SUMOsp 2.0. Proteomics 9: 3409–3412.
Rieping, M. and Schoffl, F. (1992) Synergistic effect of upstream sequences, CCAAT box elements, and HSE sequences for enhanced expression of chimaeric heat shock genes in transgenic tobacco. Mol. Gen. Genet. 231: 226–232.
Robertson, M., Close, T.J. and Cuming, A.C. (1995) Sequence analysis and hormonal regulation of a dehydrin promoter from barley, Hordeum vulgare. Physiol. Plant. 94: 470-478.
Rodriguez, M.S., Dargemont, C. and Hay, R.T. (2001) SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J. Biol. Chem. 276: 12654–12659.
Rogers, S.O. and Bendich, A.J. (1985) Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol. Biol. 5: 69–76.
Rorat, T. (2006) Plant dehydrins--tissue location, structure and function. Cell Mol. Biol. Lett. 11: 536–556.
Rouse, D., Gehring, C.A. and Parish, R.W. (1992) Structure and sequence of a dehydrin-like gene in Arabidopsis thaliana. Plant Mol. Biol. 19: 531–532.
Rouse, D.T., Marotta, R. and Parish, R.W. (1996) Promoter and expression studies on an Arabidopsis thaliana dehydrin gene. FEBS Lett. 381: 252–256.
Satoh, R., Nakashima, K., Seki, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2002) ACTCAT, a novel cis-acting element for proline- and hypoosmolarity-responsive expression of the ProDH gene encoding proline dehydrogenase in Arabidopsis. Plant Physiol. 130: 709–719.
Schneider, C.A., Rasband, W.S. and Eliceiri, K.W. (2012) NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9: 671–675.
Shinwari, Z.K., Nakashima, K., Miura, S., Kasuga, M., Seki, M., Yamaguchi-Shinozaki, K. et al. (1998) An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochem. Biophys. Res. Commun. 250: 161–170.
Shiota, H., Yang, G., Shen, S., Eun, C.H., Watabe, K., Tanaka, I. et al. (2004) Isolation and characterization of six abscisic acid-inducible genes from carrot somatic embryos. Plant Biotechnol. 21: 309–314.
Siddiqua, M. and Nassuth, A. (2011) Vitis CBF1 and Vitis CBF4 differ in their effect on Arabidopsis abiotic stress tolerance, development and gene expression. Plant Cell Environ. 8: 1345–1359.
Simpson, S.D., Nakashima, K., Narusaka, Y., Seki, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2003) Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. Plant J. 33: 259–270.
Stockinger, E.J., Gilmour, S.J. and Thomashow, M.F. (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA 94: 1035–1040.
Sorensen, A.M., Kröber, S., Unte, U.S., Huijser, P., Dekker, K. and Saedler, H. (2003) The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. Plant J. 33: 413–423.
Su, C.L., Chao, Y.T., Yen, S.H., Chen, C.Y., Chen, W.C., Chang, Y.C. et al. (2013) Orchidstra: an integrated orchid functional genomics database. Plant Cell Physiol. 54: e11.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731–2739.
Tian, X.H., Li, X.P., Zhou, H.L., Zhang, J.S., Gong, Z.Z. and Chen, S.Y. (2005) OsDREB4 genes in rice encode AP2-containing proteins that bind specifically to the dehydration-responsive element J. Integr. Plant Biol. 47: 467−476.
Tjus, S.E., Moller, B.L. and Scheller, H.V. (1998) Photosystem I is an early target of photoinhibition in barley illuminated at chilling temperatures. Plant Physiol. 116: 755–764.
Tong, Z., Hong, B., Yang, Y., Li, Q., Ma, N., Ma, C. et al. (2009) Overexpression of two chrysanthemum DgDREB1 group genes causing delayed flowering or dwarfism in Arabidopsis. Plant Mol. Biol. 71: 115−129.
Tsai, W.C., Fu, C.H., Hsiao, Y.Y., Huang, Y.M., Chen, L.J., Wang, M. et al. (2013) OrchidBase 2.0: comprehensive collection of Orchidaceae floral transcriptomes. Plant Cell Physiol. 54: e7.
Urao, T., Yamaguchi-Shinozaki, K., Urao, S. and Shinozaki, K. (1993) An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 5:1529−39.
Wang, Z., Reddy, V.R. and Quebedeaux, B. (1997) Growth and photosynthetic response of soybean to short-term cold temperature. Environ. Exp. Bot. 37: 13–24.
Wang, X., Sun, X., Liu, S., Liu, L., Lin, X., Sun, X. et al. (2005) Molecular cloning and characterization of a novel ice gene from Capsella bursa-pastoris. Mol. Biol. (N.Y.) 39: 18–25.
Wang, T., Tong, Z., Ma, N. and Gao, J. (2009) Isolation and expression analysis of Rh-DREB1s gene in cut roses (Rosa hybrida) under ethylene treatment and water deficit stress. Yuan Yi Xue Bao 36: 65–72.
Welin, B.V., Olson, A. and Palva, E.T. (1995) Structure and organization of two closely related low-temperature-induced dhn/lea/rab-like genes in Arabidopsis thaliana L. Heynh. Plant Mol. Biol. 29: 391–395.
Welling, A. and Palva, E.T. (2008) Involvement of CBF transcription factors in winter hardiness in birch. Plant Physiol. 147: 1199−1211.
Willing, R.P. and Leopold, A.C. (1983) Cellular expansion at low temperature as a cause of membrane lesions. Plant Physiol. 71: 118–121.
Wilson, K., Long, D., Swinburne, J. and Coupland, G. (1996) A Dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETALA2. Plant Cell 8: 659−671.
Xiao, H. and Nassuth, A. (2006) Stress- and development-induced expression of spliced and unspliced transcripts from two highly similar dehydrin 1 genes in V. riparia and V. vinifera. Plant Cell Rep. 25: 968−977.
Xiao, H., Tattersall, E.A., Siddiqua, M.K., Cramer, G.R. and Nassuth, A. (2008) CBF4 is a unique member of the CBF transcription factor family of Vitis vinifera and Vitis riparia. Plant Cell Environ. 31: 1−10.
Xue, G.P. (2002) An AP2 domain transcription factor HvCBF1 activates expression of cold-responsive genes in barley through interaction with a (G/a)(C/t)CGAC motif. Biochim. Biophys. Acta 1577: 63–72.
Yamaguchi-Shinozaki, K. and Shinozaki, K. (1994) A novel cis-Acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6: 251–264.
Yoo, S.D., Cho, Y.H. and Sheen, J. (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2: 1565–1572.
Zhao, J., Li, S., Jiang, T., Liu, Z., Zhang, W., Jian,G. et al. (2012) Chilling stress–the key predisposing factor for causing Alternaria alternata infection and leading to cotton (Gossypium hirsutum L.) leaf senescence. PLoS ONE 7: e36126.
Zhao, M.L., Wang, J.N., Shan, W., Fan, J.G., Kuang, J.F., Wu, K.Q. et al. (2013) Induction of jasmonate signalling regulators MaMYC2s and their physical interactions with MaICE1 in methyl jasmonate-induced chilling tolerance in banana fruit. Plant Cell Environ. 36: 30–51.
Zhu, L., Liu, D., Li, Y. and Li, N. (2013) Functional phosphoproteomic analysis reveals that a serine-62-phosphorylated isoform of ethylene response factor110 is involved in Arabidopsis bolting. Plant Physiol. 161: 904−917.