簡易檢索 / 詳目顯示

研究生: 吳仲祥
Wu, Chung-Shiang
論文名稱: 高效能壓控振盪器與混頻器設計與分析
Analysis and design of high performance RF mixers and voltage controlled oscillators
指導教授: 徐碩鴻
Hsu, Shuo-Hung
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 55
中文關鍵詞: 混頻器壓控振盪器
外文關鍵詞: Mixer, voltage controlled oscillator
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來由於CMOS通訊系統的快速發展,對於高效能,高傳輸速度與低功率的RF前端積體電路的需求越來越高。本論文研究高效能混頻器與壓控振盪器設計。由於對於一無線通訊系統的線性度特性主要受到後級電路所主導,我們研究將特別針對混頻器IIP3的設計。本論文如下將分為兩大部分。
    第一部份包含TSMC CMOS 0.18um高性能低功率的混頻器與壓控振盪器設計。我們設計一混頻器在1V供應電壓下可以得到高的轉換增益,中等的雜訊指數與線性度。以及設計一壓控振盪器合併LDO與bandgap參考電壓,藉由電流共用的方式,可以節省大量的功率消耗且可以得到優良的相位雜訊特性以及FOM。最後我們實現一混頻器並內建壓控振盪器供給其LO訊號,並配合自動的校正機制,研究混頻器的特性與LO訊號大小的相關性以及合併設計混頻器與壓控振盪器所產生的影響。
    此論文的第二部分則研究了兩種線性化技術且利用TSMC CMOS 0.18um設計了兩高線性度的混頻器。由數學推導,第一顆混頻器建立一注入區塊來消除輸出端因電路非線性所產生的三階諧波項。藉由簡單的架構可以提升電路的IIP3維持混頻器轉換增益,且僅僅增加10%的功率消耗。另一顆混頻器再輸入級設計兩訊號路徑,一提供電路主要的轉換增益,另一輔助的路徑則產生與RF訊號電流中非線性部分相消的電流,雖然此電路模擬為了維持一定的轉換增益而消耗較多的功率,但是達到了最高的IIP3。此部分研究主要的目的為維持一定的轉換增益並且達到高IIP3的混頻器設計。


    Recently, rapid development of wireless communication systems demands high performance, high speed, and low power CMOS RFICs. This study focuses on high performance VCOs and mixers for wireless communications. Because the system IIP3 is mainly dominated by the stage following low noise amplifier, we especially focus on the linearity of mixers. This thesis is divided into two parts as follows.
    First, low power and high performance mixer and VCO are designed and fabricated by TSMC CMOS 0.18 m process. A mixer can operate under 1V and achieve good conversion gain, fair noise figure and IIP3. The VCO is co-designed with LDO (low drop-out) regulator and bandgap. Using the cascode current reused topology, we can save considerable amount of power and obtain superior phase noise reduction and FOM. Finally, we implement a mixer by using a VCO to generate differential LO signals and adopting the proposed calibration mechanisms. We observe the dependence of the mixer performance on LO signals and investigate the relation between the VCO and the mixer.
    In the second part of this dissertation, we present two linearized techniques and describe two high linearity mixers implemented with these techniques, which are also designed based on TSMC CMOS 0.18 m technology. The injection block reported here can cancel the output IMD3 terms. This is also verified by mathematic derivations. This design can achieve a high IIP3 up to 15dBm and maintain the conversion gain at about 10dB, while adding the power by only 0.25mW. The second mixer’s RF stage transconductance is linearized by using two paths: one is the main conversion gain path and the other is auxiliary path. The RF current’s nonlinear term is cancelled by the auxiliary path, and the IIP3 is significantly enhanced to 17dBm, an additional power of 10mW is needed to maintain an 8dB conversion gain.

    Abstract i 摘要 ii List of Figures v List of Tables viii Chapter 1  Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 2 Chapter 2  Basic Concepts of this thesis 3 2.1 Fundamental of Mixer Design 3 2.2 Background of VCO Design 5 2.3 Introduction of LDO and bandgap design 6 2.4 Mixer Linearity analysis 8 Chapter 3  VCO and Mixer design 9 3.1  Motivation 9 3.2  Low supply voltage folded mixer design 11 3.2.1 Proposed circuit topology and analysis 11 3.2.2 Tuned out inductors design and analysis 12 3.2.3 Input matching network and output buffer design 13 3.2.4 Simulation and measurement result 14 3.2.5 Summary and discussion 17 3.3  Low voltage self-regulating VCO design 18 3.3.1 Proposed circuit topology and analysis 18 3.3.2 Modified Bandgap reference voltage design 19 3.3.3 VCO core circuit design and analysis 20 3.3.4 Simulation and measurement result 21 3.3.5 Summary and discussion 24 3.4  Mixer with auto-calibration LO signal design 25 3.4.1 Proposed circuit topology and analysis 26 3.4.2 LO generation VCO design 26 3.4.3 Power detector and 1-bit ADC design 27 3.4.4 Simulation and measurement result 29 3.4.5 Summary and discussion 32 Chapter 4  High Linearity Mixer Design 34 4.1 Motivation 34 4.2 Using 2nd order harmonic injection to cancel IMD3 nonlinearity low voltage mixer design 36 4.2.1 Proposed circuit topology and analysis 36 4.2.2 Injection block design and analysis 37 4.2.3 Output buffer and matching network design 40 4.2.4 Simulation result 41 4.2.5 Summary and discussion 44 4.3 High linearity mixer design by linearizing RF stage transconductance 45 4.3.1 Proposed Circuit topology and analysis 45 4.3.2 Linearized transconductance RF stage design 46 4.3.3 Inductor, matching network, and buffer design 47 4.3.4 Simulation Result 48 4.3.5 Summary and discussion 51 Chapter 5  Conclusion and Future Work 52 References 54

    [1] D. V. Vorst, S. Mirabbasi, “Low power 1v 5.8GHz bulk-driven mixer with on-chip balun in 0.18um CMOS,” 2008 IEEE Radio Frequency Integrated Circuits Symposium.
    [2] J. Park, C. H. Lee, B. S. Kim, J. Laskar, “Design and analysis of low flicker noise NMOS mixers for direct-conversion receivers,” IEEE Transactions on Microwave Theory and Techniques, VOL. 54, NO. 12, Dec. 2006.
    [3] E. A. M. Klumperink, S. M. Louwsma, G. J. M. Wienk and B. Nauta, “A CMOS switched transconductor mixer,” IEEE J. Solid-State Circuits, vol. 39, pp. 1331-1340, Mar. 2004.
    [4] K. H. Liang, C. H. Lin, H. Y. Chang, Y. J. Chan, “A new linearization technique for CMOS RF mixer using third-order transconductance cancellation,” IEEE Microwave and Wireless Components Letters 2008.
    [5] A. Dec, Ken Suyama, Tomomitsu, “A 4.5GHz LC-VCO with self-regulating technique,” 2007 IEEE International Solid-State Circuits Conference.
    [6] O. Nam-jin, L. Sang-Gug, “11GHz CMOS differential VCO with back-gate transformer feedback,” 2005 IEEE Microwave Wireless Component Letter, Nov 2005.
    [7] B. Gilbert, “A precise four quadrant multiplier with subnanosecond response,” IEEE J. Solid-State Circuits, vol. SC-3, no. 12, pp. 365–373, Dec. 1968.
    [8] J. Yoon, H. Kim, C. Park, J. Yang, H. Song, B. Kim, “A new RF CMOS Gilbert mixer with improved noise figure and linearity,” IEEE Transactions on Microwave Theory and Techniques, VOL. 56, NO. 3, Dec. 2008.
    [9] V. Vidojkovic, J. van der Tang, A. Leeuwenburgh and A. H. M. van Roermund, “A low-voltage folded-switching mixer in 0.18um CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 6, pp. 1259–1264, June. 2005.
    [10] I. Nam, B. Kim, K. Lee, “CMOS RF amplifier and mixer circuits utilizing complementary characteristics of parallel combined NMOS and PMOS devices” IEEE Transactions on Microwave Theory and Techniques, VOL. 53, NO. 5, May 2005.
    [11] A. Hajimiri, S. Limotyrakis, T. H. Lee, “Jitter and phase noise in ring oscillators,” IEEE J. Solid-State Circuits, vol.34, No.6, June 1999.
    [12] Roberto Aparicio, Ali Hajimiri, “A noise –shifting differential Colpitts VCO,” IEEE J. Solid-State Circuits, vol.37, No.12, December 2002.
    [13] D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” Proc. IEEE, vol. 54, pp. 329–330, Feb. 1966.
    [14] A.Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, pp. 179–194, Feb. 1998.
    [15] A. Hajimiri and T. H. Lee, “Design issues in CMOS differential LC oscillators, ”IEEE J. Solid-State Circuits, vol. 34, pp. 717–724, May 1999.
    [16] D. Ham and A. Hajimiri, “Concepts and methods in optimization of integrated LC VCOs,” IEEE J. Solid-State Circuits, vol. 36, pp. 896–909, June 2001.
    [17] H. H. Roh, E. J. Lee, J. W. Jung, K. T. Park, K. K. Nae, H. G. Cho, J. S. Park, J. E. Jang, “A regulated low phase noise differential Colpitts VCO for mobile RFID system, “ IEEE Microwave Conference 2007.
    [18] X. Fan,C. Mishra and E. S. Sinencio, “Single Miller capacitor frequency compensation technique for low-power multistage amplifiers, ” IEEE J. Solid-State Circuits, vol.40, No.3, pp. 584–592, June 2005.
    [19] B. Razavi, RF Microelectronics. Upper Saddle River, NJ: Prentice-Hall, 1998.
    [20] T. H. Lee, The design of CMOS radio-frequency integrated circuits. 2004
    [21] T. T. Hsu, C. N. Kuo, “Low voltage 2mW 6~10.6GHz ultra-wideband CMOS mixer with active balun,” IEEE ISCAS 2006.
    [22] C. Kienmayer, M. Tiebout, W. Simb¨urger, and A. L. Scholtz, “A low power low voltage NMOS bulk-mixer with 20GHz bandwidth in 90nm CMOS,” Proceedings of the IEEE International Symposium on Circuits and Systems, vol. 4, pp. 385–388, May 2004.
    [23] C. Debono, F. Maloberti, and J. Micaller, “A 900 MHz, 0.9V low power CMOS down-conversion mixer,” IEEE Custom Integrated Circuits Conference, pp. 527–530, May 2001.
    [24] H. Wang, ““A 1-V multigigahertz RF mixer core in 0.5μm CMOS,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 2265–2267, December 1998.
    [25] K. N. Leung, K. T. Mok, “A Sub-1-v 15-ppm/C CMOS Band-gap Voltage Reference Without Requiring Low Threshold Voltage Device,” IEEE J. Solid-State Circuits, vol.37, No4, April 2002.
    [26] S. Yun, S. Shin, H. Choi, S. Lee, “A 1mW current-reuse CMOS differential LC-VCO with low phase noise,” 2005 IEEE International Solid-State Circuits Conference.
    [27] A. H. Mostafa and M. N. El-Glmal, “A 12.5GHz back-gate tuned CMOS voltage control oscillator,” 2000 IEEE.
    [28] X. Sun, D. Linten, O. Dupus, G. Carchon, P. Soussan, S. Decoutere, and W. De Raedt, “High-Q on-chip inductors using thin-film wafer level packaging technology demonstrated on a 90 nm RF-CMOS 5GHz VCO,” Proc. European Microwave Conf., vol. 1, pp. 1–4, 2005.
    [29] M. Bao, Y. Li, and H. Jacobsson, “A 21.5/43-GHz dual-frequency balanced Colpitts VCO in SiGe technology,” IEEE J. Solid-State Circuits, Vol.39, No.8, pp.1352-1355, Aug. 2004.
    [30] O. Jeon, R. M. Fox and B. A. Myers, “Analog AGC circuitry for a CMOS WLAN receiver,” IEEE J. Solid-State Circuits, Vol.41, No.10, pp.2291-2300, Aug. 2006.
    [31] S. Lou, and H. C. Loung, “A linearization technique for RF receiver front-end using second-order-intermodulation injection,” J. Solid-State Circuits, VOL. 43, NO. 11, Nov. 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE