簡易檢索 / 詳目顯示

研究生: 林建佑
Lin, Chien-Yu.
論文名稱: 藉由大數具挖掘和NGS數據識別建構基因和表觀遺傳網路來探討乳頭狀甲狀腺癌的分子進展機制
Constructing the Genetic and Epigenetic Networks for Investigating the Molecular Progression Mechanisms of Papillary Thyroid Cancer Development via Big Database Mining and NGS Data Identification
指導教授: 陳博現
Chen, Bor-Sen
口試委員: 王禹超
Wang, Yu-Chao
王慧菁
Wang, Hui-Ching
汪宏達
Wang, Horng-Dar
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 76
中文關鍵詞: 乳頭狀甲狀腺癌遺傳和表觀遺傳網絡下一代測序和DNA甲基化數據致癌生物標誌物遺傳和表觀遺傳藥物靶點藥物數據挖掘
外文關鍵詞: papillary thyroid cancer, genetic and epigenetic network, next generation sequencing (NGS) and DNA methylation data, carcinogenic biomarkers, genetic and epigenetic drug targets, drug data mining
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 甲狀腺癌是最常見的內分泌癌,乳頭狀甲狀腺癌(PTC)佔甲狀腺癌的比例最高。癌症的發病機制和進展機制是由遺傳和表觀遺傳環境多因素畸變引起的,包括PTC。在本研究中,我們通過大數據挖掘構建候選蛋白質-蛋白質相互作用網絡(PPIN)和候選基因調控網絡(GRN),然後將候選PPIN和GRN整合到候選遺傳和表觀遺傳網絡(GEN)中。我們應用系統識別方法和系統順序檢測方法,基於下一代測序(NGS)和DNA甲基化譜修剪候選GEN,以獲得真實的GEN。然後,我們通過主網絡投影(PNP)方法從真實GEN中提取核心GEN。為了研究PTC致癌過程中的致病和進展機制,將每個階段PTC的核心GEN投射到KEGG途徑,以獲得每個階段PTC的核心途徑。接下來,我們比較了PTC的兩個連續核心途徑,以研究不同的進展遺傳和表觀遺傳機制,並在PTC三個階段確定了關鍵的致癌生物標誌物。此外,在我們的結果中,我們發現這些致癌生物標誌物引起多種細胞功能障礙,包括免疫反應,增殖,細胞週期,細胞凋亡,細胞遷移,血管生成,淋巴管生成,上皮-間質轉化(EMT)和細胞分化等關鍵因素誘發致癌進展。通過這些重要的致癌生物標誌物,我們進一步選擇了5種生物標誌物,其中2種基因通過DNA甲基化在正常甲狀腺細胞進展至早期PTC和6種生物標誌物中進行了修飾,其中2種基因在早期PTC的進展中通過DNA甲基化進行了修飾。晚期PTC可以使PTC細胞作為潛在的遺傳和表觀遺傳藥物靶標進展。最後,我們利用藥物數據挖掘方法通過藥物數據庫進行藥物設計,找到5種分子藥物,用於治療各項進展中的藥物靶點。


    Thyroid cancer is the most common endocrine cancer, and papillary thyroid cancer (PTC) accounts for the highest proportion of thyroid cancer. The pathogenetic and progression mechanisms of cancer are caused by genetic and epigenetic environmental multifactorial aberrations, including PTC. In this study, we constructed the candidate protein-protein interaction network (PPIN) and candidate gene regulatory network (GRN) by big data mining and then integrated candidate PPIN and GRN into candidate genetic and epigenetic network (GEN). We applied system identification method and system order detection method to prune candidate GEN based on next generation sequencing (NGS) and DNA methylation profiles to obtain real GEN. Then, we extracted core GEN from real GEN through principal network projection (PNP) method. In order to investigate the pathogenic and progression mechanisms in the carcinogenic process of PTC, core GEN of each stage PTC was projected to KEGG pathways to obtain the core pathways of each stage PTC. Next, we compared two successive core pathways of PTC to investigate different progression genetic and epigenetic mechanisms and identified the crucial carcinogenic biomarkers in three stages PTC. In addition, in our result, we found out these carcinogenic biomarkers causing multiple cellular dysfunctions including immune response, proliferation, cell cycle, apoptosis, cell migration, angiogenesis, lymphangiogenesis, epithelial-mesenchymal transition (EMT) and cell differentiation that were the key factors to induce carcinogenic progression. By these crucial carcinogenic biomarkers, we further selected 5 biomarkers which 2 genes were modified by DNA methylation in the progression of normal thyroid cells to early-stage PTC and 6 biomarkers which 2 genes were modified by DNA methylation in the progression of early-stage PTC to late-stage PTC that could make PTC cells progress as potential genetic and epigenetic drug targets. Finally, we
    used drug data mining method for drug design via drug data database to find 5 molecular drugs to treat drug targets in each progressions.

    Contents 摘要…………………………………………………………………………………….i Abstract…………………………………………………………………………….....ii Chapter 1 Introduction………………………….…………………………………....1 Chapter 2 Results…………………………………………….…………………….....5 2.1 Constructing and investigating core signaling pathways from genome-wide GENs and core GENs in each stage thyroid cancer cells………………………….5 2.2 Investigating progression mechanisms by differential core pathway from normal stage to early-stage thyroid cancer cells……………………………………………7 2.3 Investigating progression mechanisms of differential core pathways from early-stage to late-stage thyroid cancer cells……………………………………………10 Chapter 3 Discussion……………………………………………....………..………14 3.1 The carcinogenic progression mechanism from normal thyroid cells to early-stage papillary thyroid cancer cells……………………………………………….14 3.2 The carcinogenic progression mechanism between early-stage papillary thyroid cancer cells and late-stage papillary thyroid cancer cells…………………………19 3.3 The overview of genetic and epigenetic progression mechanism from normal to late-stage papillary thyroid cancer cells…………………………………………..25 3.4 The multiple-molecules drug design for papillary thyroid cancer by drug data mining…………………………………………………………………………….28 Chapter 4 Conclusion…………………….….……………………………………...31 Chapter 5 Materials and Methods…………………….…………………...……….33 5.1 Constructing candidate genome-wide GEN by big data mining……………...34 5.2 Constructing real PPINs and real GRNs in real GENs at different stages of PTC cells……………………………………………………………………………….35 5.3 Parameter estimation of the systematic models of candidate GENs via system identification method and system order detection…………………………...…...39 5.4 Applying the PNP method to extract core GENs in the real GENs………......45 Tables………………………………………………………………………………...51 Table 1. The number of nodes and edges in candidate GENs and identified GENs of PTC each stage…………………………………………………………….......51 Table 2. The pathway enrichment analysis of proteins by applying the DAVID in the real GWGEN of normal thyroid cells……………………………………...…52 Table 3. The pathway enrichment analysis of proteins by applying the DAVID in the GWGEN of early-stage papillary thyroid cancer cells……….…………...….53 Table 4. The pathway enrichment analysis of proteins by applying the DAVID in the GWGEN of late-stage papillary thyroid cancer cells……………………...…54 Table 5. The number of overlap proteins and genes in the core pathways of normal to early-stage papillary thyroid cancer and early to late-stage papillary thyroid cancer…………………………………………………………………………….55 Table 6. Multiple molecule drugs and the corresponding target genes for carcinogenic progression from normal thyroid cells to early-stage papillary thyroid cancer cells…………………………………………………………………....….56 Table 7. Multiple molecule drugs and the corresponding target genes for carcinogenic progression from early-stage papillary thyroid cancer cells to late-stage papillary thyroid cancer cells……………………………………...……….57 Figures…………………………………………………………………………….....58 Figure 1. Flowchart of using systems biology method to construct GENs, core GENs and core signaling pathways of carcinogenic progression mechanism in each stage of PTC and development of multiple drugs by potential genetic and epigenetic biomarkers………………………………………………………………………..58 Figure 2. The genetic and epigenetic network (GEN) of normal stage of thyroid cells……………………………………………………………………………….60 Figure 3. The genetic and epigenetic network (GEN) of early-stage of thyroid cancer cells…………………………………………....………………………….61 Figure 4. The genetic and epigenetic network (GEN) of late-stage of thyroid cancer cells……………………………………………………………………………….62 Figure 5. The core genetic and epigenetic network (GEN) of normal stage of thyroid cells……………………………………………………………………………….63 Figure 6. The core genetic and epigenetic network (GEN) of early-stage of thyroid cancer cells……………………………………………………………………….64 Figure 7. The core genetic and epigenetic network (GEN) of late-stage of thyroid cancer cells……………………………………………………………………….65 Figure 8. The core signaling pathways are obtained by projecting core GENs to KEGG pathways to investigate the carcinogenic progression mechanism from normal thyroid cells to early-stage papillary thyroid cancer cells…………………66 Figure 9. The core signaling pathways are obtained by projecting core GENs to KEGG pathways to investigate the carcinogenic progression mechanism from early-stage thyroid cancer cells to late-stage papillary thyroid cancer cells………68 Figure 10. The overview of carcinogenic progression mechanism from normal to late-stage papillary thyroid cancer cells…………………………………………..70 References………………………………………………………………………..….71

    References
    1. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet, 2016. 388(10053): p. 1545-1602.
    2. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet, 2016. 388(10053): p. 1459-1544.
    3. Derwahl M and Nicula D. Estrogen and its role in thyroid cancer. Endocr Relat Cancer, 2014. 21(5): p. T273-83.
    4. Nucera C, Lawler J, and Parangi S. BRAF(V600E) and microenvironment in thyroid cancer: a functional link to drive cancer progression. Cancer Res, 2011. 71(7): p. 2417-22.
    5. Murugan AK, Munirajan AK, and Alzahrani AS. Long noncoding RNAs: emerging players in thyroid cancer pathogenesis. Endocrine-Related Cancer, 2018. 25(2): p. R59-R82.
    6. Pacini F, Castagna MG, Brilli L, Pentheroudakis G, and Group EGW. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol, 2010. 21 Suppl 5: p. v214-9.
    7. Mahmoudian-Sani MR, Mehri-Ghahfarrokhi A, Asadi-Samani M, and Mobini GR. Serum miRNAs as Biomarkers for the Diagnosis and Prognosis of Thyroid Cancer: A Comprehensive Review of the Literature. Eur Thyroid J, 2017. 6(4): p. 171-177.
    8. de la Chapelle A and Jazdzewski K. MicroRNAs in thyroid cancer. J Clin Endocrinol Metab, 2011. 96(11): p. 3326-36.
    9. Faam B, Ghaffari MA, Ghadiri A, and Azizi F. Epigenetic modifications in human thyroid cancer. Biomed Rep, 2015. 3(1): p. 3-8.
    10. Asa SL and Ezzat S. The epigenetic landscape of differentiated thyroid cancer. Mol Cell Endocrinol, 2018. 469: p. 3-10.
    11. Zhu X and Cheng SY. Epigenetic Modifications: Novel Therapeutic Approach for Thyroid Cancer. Endocrinol Metab (Seoul), 2017. 32(3): p. 326-331.
    12. Doerks T, Copley RR, Schultz J, Ponting CP, and Bork P. Systematic identification of novel protein domain families associated with nuclear functions. Genome Res, 2002. 12(1): p. 47-56.
    13. Forbes SA, Beare D, Bindal N, Bamford S, Ward S, Cole CG, et al. COSMIC: High‐Resolution Cancer Genetics Using the Catalogue of Somatic Mutations in Cancer. Current Protocols in Human Genetics, 2018. 91(1): p. 10.11.1-10.11.37.
    14. Chen Y, Li J, Dunn S, Xiong S, Chen W, Zhao Y, et al. Histone deacetylase 2 (HDAC2) protein-dependent deacetylation of mortality factor 4-like 1 (MORF4L1) protein enhances its homodimerization. J Biol Chem, 2014. 289(10): p. 7092-8.
    15. An R, da Silva Xavier G, Semplici F, Vakhshouri S, Hao HX, Rutter J, et al. Pancreatic and duodenal homeobox 1 (PDX1) phosphorylation at serine-269 is HIPK2-dependent and affects PDX1 subnuclear localization. Biochem Biophys Res Commun, 2010. 399(2): p. 155-61.
    16. Perdas E, Stawski R, Nowak D, and Zubrzycka M. The role of miRNA in papillary thyroid cancer in the context of miRNA Let-7 Family. Int J Mol Sci, 2016. 17(6).
    17. Stegert MR, Tamaskovic R, Bichsel SJ, Hergovich A, and Hemmings BA. Regulation of NDR2 protein kinase by multi-site phosphorylation and the S100B calcium-binding protein. J Biol Chem, 2004. 279(22): p. 23806-12.
    18. Zimmerli C, Lee BP, Palmer G, Gabay C, Adams R, Aurrand-Lions M, et al. Adaptive immune response in JAM-C-deficient mice: normal initiation but reduced IgG memory. J Immunol, 2009. 182(8): p. 4728-36.
    19. Sun W, Xu Y, Zhao C, Hao F, Chen D, Guan J, et al. Targeting TGF-β1 suppresses survival of and invasion by anaplastic thyroid carcinoma cells. American Journal of Translational Research, 2017. 9(3): p. 1418-1425.
    20. Ivanova K, Manolova I, Ignatova M-M, and Gulubova M. Immunohistochemical expression of TGF-Β1, SMAD4, SMAD7, TGFβRII and CD68-positive TAM densities in papillary thyroid cancer. Open Access Macedonian Journal of Medical Sciences, 2018. 6(3): p. 435-441.
    21. Kowenz-Leutz E, Pless O, Dittmar G, Knoblich M, and Leutz A. Crosstalk between C/EBPbeta phosphorylation, arginine methylation, and SWI/SNF/Mediator implies an indexing transcription factor code. EMBO J, 2010. 29(6): p. 1105-15.
    22. Yang L, Pang Y, and Moses HL. TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol, 2010. 31(6): p. 220-7.
    23. Wang J, Yang H, Si Y, Hu D, Yu Y, Zhang Y, et al. Iodine promotes tumorigenesis of thyroid cancer by suppressing mir-422a and up-regulating MAPK1. Cell Physiol Biochem, 2017. 43(4): p. 1325-1336.
    24. Bosken CA, Farnung L, Hintermair C, Merzel Schachter M, Vogel-Bachmayr K, Blazek D, et al. The structure and substrate specificity of human Cdk12/Cyclin K. Nat Commun, 2014. 5: p. 3505.
    25. Shiozaki A, Lodyga M, Bai XH, Nadesalingam J, Oyaizu T, Winer D, et al. XB130, a novel adaptor protein, promotes thyroid tumor growth. Am J Pathol, 2011. 178(1): p. 391-401.
    26. Chen L, Yang C, Feng J, Liu X, Tian Y, Zhao L, et al. Clinical significance of miR-34a expression in thyroid diseases - an (18)F-FDG PET-CT study. Cancer Manag Res, 2017. 9: p. 903-913.
    27. Kumari S, Devi Gt, Badana A, Dasari VR, and Malla RR. CD151-A striking marker for cancer therapy. Biomark Cancer, 2015. 7: p. 7-11.
    28. Reed SM and Quelle DE. p53 acetylation: regulation and consequences. Cancers (Basel), 2014. 7(1): p. 30-69.
    29. Rogounovitch TI, Saenko Va Fau - Ashizawa K, Ashizawa K Fau - Sedliarou IA, Sedliarou Ia Fau - Namba H, Namba H Fau - Abrosimov AY, Abrosimov Ay Fau - Lushnikov EF, et al. TP53 codon 72 polymorphism in radiation-associated human papillary thyroid cancer. (1021-335X (Print)).
    30. Yeger H and Perbal B. CCN family of proteins: critical modulators of the tumor cell microenvironment. J Cell Commun Signal, 2016. 10(3): p. 229-240.
    31. Ferrantini M, Capone I, and Belardelli F. Interferon-alpha and cancer: mechanisms of action and new perspectives of clinical use. Biochimie, 2007. 89(6-7): p. 884-93.
    32. Araya RE and Goldszmid RS. IFNAR1 degradation: a new mechanism for tumor immune evasion? Cancer Cell, 2017. 31(2): p. 161-163.
    33. Chen W-L, Huang A-F, Huang S-M, Ho C-L, Chang Y-L, and Chan JY-H. CD164 promotes lung tumor-initiating cells with stem cell activity and determines tumor growth and drug resistance via Akt/mTOR signaling. Oncotarget, 2017. 8(33): p. 54115-54135.
    34. Trivedi R and Mishra DP. Trailing TRAIL resistance: novel targets for TRAIL sensitization in cancer cells. Front Oncol, 2015. 5: p. 69.
    35. Sarhan D, D'Arcy P, and Lundqvist A. Regulation of TRAIL-receptor expression by the ubiquitin-proteasome system. Int J Mol Sci, 2014. 15(10): p. 18557-73.
    36. Shin MS, Kim HS, Lee SH, Park WS, Kim SY, Park JY, et al. Mutations of tumor necrosis factor-related apoptosis-inducing ligand receptor 1 (TRAIL-R1) and receptor 2 (TRAIL-R2) genes in metastatic breast cancers. Cancer Research, 2001. 61(13): p. 4942.
    37. Boyes J, Byfield P, Nakatani Y, and Ogryzko V. Regulation of activity of the transcription factor GATA-1 by acetylation. Nature, 1998. 396: p. 594.
    38. Srinivasan S, Meyer RD, Lugo R, and Rahimi N. Identification of PDCL3 as a novel chaperone protein involved in the generation of functional VEGF receptor 2. J Biol Chem, 2013. 288(32): p. 23171-81.
    39. Siraj AK, Masoodi T, Bu R, Beg S, Al-Sobhi SS, Al-Dayel F, et al. Genomic profiling of thyroid cancer reveals a role for thyroglobulin in metastasis. Am J Hum Genet, 2016. 98(6): p. 1170-1180.
    40. Ward CJ, Wu Y, Johnson RA, Woollard JR, Bergstralh EJ, Cicek MS, et al. Germline PKHD1 mutations are protective against colorectal cancer. Hum Genet, 2011. 129(3): p. 345-9.
    41. Li D, Xia L, Chen M, Lin C, Wu H, Zhang Y, et al. miR-133b, a particular member of myomiRs, coming into playing its unique pathological role in human cancer. Oncotarget, 2017. 8(30): p. 50193-50208.
    42. de la Torre NG, Buley I, Wass JA, and Turner HE. Angiogenesis and lymphangiogenesis in thyroid proliferative lesions: relationship to type and tumour behaviour. Endocr Relat Cancer, 2006. 13(3): p. 931-44.
    43. Lee JH, Kim JE, Kim BG, Han HH, Kang S, and Cho NH. STAT3-induced WDR1 overexpression promotes breast cancer cell migration. Cell Signal, 2016. 28(11): p. 1753-60.
    44. Ono S. Functions of actin-interacting protein 1 (AIP1)/WD repeat protein 1 (WDR1) in actin filament dynamics and cytoskeletal regulation. Biochem Biophys Res Commun, 2017.
    45. Kim DW, Walker RL, Meltzer PS, and Cheng SY. Complex temporal changes in TGFbeta oncogenic signaling drive thyroid carcinogenesis in a mouse model. Carcinogenesis, 2013. 34(10): p. 2389-400.
    46. Carvalho DFG, Zanetti BR, Miranda L, Hassumi-Fukasawa MK, Miranda-Camargo F, Crispim JCO, et al. High IL-17 expression is associated with an unfavorable prognosis in thyroid cancer. Oncol Lett, 2017. 13(3): p. 1925-1931.
    47. Montemayor-Garcia C, Hardin H, Guo Z, Larrain C, Buehler D, Asioli S, et al. The role of epithelial mesenchymal transition markers in thyroid carcinoma progression. Endocr Pathol, 2013. 24(4): p. 206-12.
    48. Llorens MC, Lorenzatti G, Cavallo NL, Vaglienti MV, Perrone AP, Carenbauer AL, et al. Phosphorylation regulates functions of ZEB1 transcription factor. J Cell Physiol, 2016. 231(10): p. 2205-17.
    49. Bernabeu C, Lopez-Novoa JM, and Quintanilla M. The emerging role of TGF-beta superfamily coreceptors in cancer. Biochim Biophys Acta, 2009. 1792(10): p. 954-73.
    50. Finger EC, Turley RS, Dong M, How T, Fields TA, and Blobe GC. TbetaRIII suppresses non-small cell lung cancer invasiveness and tumorigenicity. Carcinogenesis, 2008. 29(3): p. 528-35.
    51. Kai H, Kadono T, Kakinuma T, Tomita M, Ohmatsu H, Asano Y, et al. CCR10 and CCL27 are overexpressed in cutaneous squamous cell carcinoma. Pathol Res Pract, 2011. 207(1): p. 43-8.
    52. Mian C, Ceccato F, Barollo S, Watutantrige-Fernando S, Albiger N, Regazzo D, et al. AHR over-expression in papillary thyroid carcinoma: clinical and molecular assessments in a series of Italian acromegalic patients with a long-term follow-up. PLoS One, 2014. 9(7): p. e101560.
    53. Zhang YZ, Qin F Fau - Han ZG, Han Zg Fau - Liu Q, Liu Q Fau - Zhou L, Zhou L Fau - Wang YW, and Wang YW. Prognostic significance of DLL4 expression in papillary thyroid cancer. (2284-0729 (Electronic)).
    54. Mukherjee S, Schaller MA, Neupane R, Kunkel SL, and Lukacs NW. Regulation of T cell activation by Notch ligand, DLL4, promotes IL-17 production and Rorc activation. J Immunol, 2009. 182(12): p. 7381-8.
    55. Bruland O, Fluge O, Akslen LA, Eiken HG, Lillehaug JR, Varhaug JE, et al. Inverse correlation between PDGFC expression and lymphocyte infiltration in human papillary thyroid carcinomas. BMC Cancer, 2009. 9: p. 425.
    56. Ekpe-Adewuyi E, Lopez-Campistrous A, Tang X, Brindley DN, and McMullen TPW. Platelet derived growth factor receptor alpha mediates nodal metastases in papillary thyroid cancer by driving the epithelial-mesenchymal transition. Oncotarget, 2016. 7(50): p. 83684-83700.
    57. Soroceanu L, Akhavan A, and Cobbs CS. Platelet-derived growth factor-alpha receptor activation is required for human cytomegalovirus infection. Nature, 2008. 455(7211): p. 391-5.
    58. McDermott U, Ames RY, Iafrate AJ, Maheswaran S, Stubbs H, Greninger P, et al. Ligand-dependent platelet-derived growth factor receptor (PDGFR)-alpha activation sensitizes rare lung cancer and sarcoma cells to PDGFR kinase inhibitors. Cancer Res, 2009. 69(9): p. 3937-46.
    59. Fakhruddin N, Jabbour M, Novy M, Tamim H, Bahmad H, Farhat F, et al. BRAF and NRAS mutations in papillary thyroid carcinoma and concordance in BRAF mutations between primary and corresponding lymph node metastases. Sci Rep, 2017. 7(1): p. 4666.
    60. Abubaker J, Jehan Z, Bavi P, Sultana M, Al-Harbi S, Ibrahim M, et al. Clinicopathological analysis of papillary thyroid cancer with PIK3CA alterations in a Middle Eastern population. J Clin Endocrinol Metab, 2008. 93(2): p. 611-8.
    61. Zaballos MA and Santisteban P. Key signaling pathways in thyroid cancer. J Endocrinol, 2017. 235(2): p. R43-R61.
    62. Penha RCC, Buexm LA, Rodrigues FR, de Castro TP, Santos MCS, Fortunato RS, et al. NKX2.5 is expressed in papillary thyroid carcinomas and regulates differentiation in thyroid cells. BMC Cancer, 2018. 18(1): p. 498.
    63. van Engelen K, Mommersteeg MT, Baars MJ, Lam J, Ilgun A, van Trotsenburg AS, et al. The ambiguous role of NKX2-5 mutations in thyroid dysgenesis. PLoS One, 2012. 7(12): p. e52685.
    64. Chen X, Yue B, Zhang C, Qi M, Qiu J, Wang Y, et al. MiR-130a-3p inhibits the viability, proliferation, invasion, and cell cycle, and promotes apoptosis of nasopharyngeal carcinoma cells by suppressing BACH2 expression. Biosci Rep, 2017. 37(3).
    65. Garcia JM, Silva J, Pena C, Garcia V, Rodriguez R, Cruz MA, et al. Promoter methylation of the PTEN gene is a common molecular change in breast cancer. Genes Chromosomes Cancer, 2004. 41(2): p. 117-24.
    66. Krzeslak A, Pomorski L, and Lipinska A. Expression, localization, and phosphorylation of Akt1 in benign and malignant thyroid lesions. Endocr Pathol, 2011. 22(4): p. 206-11.
    67. Ringel MD, Hayre N, Saito J, Saunier B, Schuppert F, Burch H, et al. Overexpression and overactivation of Akt in thyroid carcinoma. Cancer Research, 2001. 61(16): p. 6105.
    68. Murugan AK, Humudh EA, Qasem E, Al-Hindi H, Almohanna M, Hassan ZK, et al. Absence of somatic mutations of the mTOR gene in differentiated thyroid cancer. Meta Gene, 2015. 6: p. 69-71.
    69. Mitra A, Kalayarasan S, Gupta V, and Radha V. TC-PTP dephosphorylates the guanine nucleotide exchange factor C3G (RapGEF1) and negatively regulates differentiation of human neuroblastoma cells. PLoS One, 2011. 6(8): p. e23681.
    70. Wang YL, Gong WG, and Yuan QL. Effects of miR-27a upregulation on thyroid cancer cells migration, invasion, and angiogenesis. Genet Mol Res, 2016. 15(4).
    71. Vannini F, Kashfi K, and Nath N. The dual role of iNOS in cancer. Redox Biol, 2015. 6: p. 334-43.
    72. Jiang H, Zhang G, Wu JH, and Jiang CP. Diverse roles of miR-29 in cancer (review). Oncol Rep, 2014. 31(4): p. 1509-16.
    73. Li H, Zhao L, Zhang Z, Zhang H, Ding C, and Su Z. Roles of microRNA let-7b in papillary thyroid carcinoma by regulating HMGA2. Tumour Biol, 2017. 39(10): p. 1010428317719274.
    74. Deng Y, Wang J, Wang G, Jin Y, Luo X, Xia X, et al. p55PIK transcriptionally activated by MZF1 promotes colorectal cancer cell proliferation. Biomed Res Int, 2013. 2013: p. 868131.
    75. Nygaard M, Terkelsen T, Vidas Olsen A, Sora V, Salamanca Viloria J, Rizza F, et al. The mutational landscape of the oncogenic MZF1 SCAN domain in cancer. Front Mol Biosci, 2016. 3: p. 78.
    76. Ma Y, Qin H, and Cui Y. MiR-34a targets GAS1 to promote cell proliferation and inhibit apoptosis in papillary thyroid carcinoma via PI3K/Akt/Bad pathway. Biochem Biophys Res Commun, 2013. 441(4): p. 958-63.
    77. Bandres E, Agirre X, Bitarte N, Ramirez N, Zarate R, Roman-Gomez J, et al. Epigenetic regulation of microRNA expression in colorectal cancer. Int J Cancer, 2009. 125(11): p. 2737-43.
    78. Medvedeva YA, Khamis AM, Kulakovskiy IV, Ba-Alawi W, Bhuyan MSI, Kawaji H, et al. Effects of cytosine methylation on transcription factor binding sites. BMC Genomics, 2014. 15: p. 119-119.
    79. Weber M, Hellmann I, Stadler MB, Ramos L, Paabo S, Rebhan M, et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet, 2007. 39(4): p. 457-66.
    80. Li CW and Chen BS. Network Biomarkers of Bladder Cancer Based on a Genome-Wide Genetic and Epigenetic Network Derived from Next-Generation Sequencing Data. Dis Markers, 2016. 2016: p. 4149608.
    81. Chen BS and Wu CC. Systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering. Cells, 2013. 2(4): p. 635-88.
    82. Chen BS and Li CW. Big Mechanisms in Systems Biology-Big Data Mining, Network Modeling, and Genome-Wide Data Identification. Elsevier, 2017: p. 878.

    QR CODE