簡易檢索 / 詳目顯示

研究生: 陳德偉
Chen, Te-Wei
論文名稱: 造血幹細胞多樣性應用之研發:血小板前驅細胞-巨核細胞的體外誘導增殖技術
Ex vivo induction and expansion of megakaryocyte
指導教授: 朱一民
Chu, I-Ming
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 113
中文關鍵詞: 造血幹細胞巨核細胞體外誘導無血清
外文關鍵詞: Hematopoietic stem cells, Megakaryocytes, Ex vivo induction, Serum-free
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 巨核細胞(Megakaryocytes,Mks或是CD41a+CD61+細胞)是由造血幹細胞(Hematopoietic stem cells,HSCs)分化而來,在骨髓中成熟並且生成以及釋放血小板(platelets),因此被稱為血小板的前驅細胞(progenitor)。病患在接受高劑量化療後的幹細胞移植過程中,首先藉由體外誘導培養提升巨核細胞數量,進而與幹細胞共同移植後能夠加速血小板的恢復時間。在本研究中,使用無血清增殖過後的造血幹細胞為細胞來源,藉由二階部分因子實驗設計結合陡升路徑法針對巨核細胞來開發一個無血清、無滋養層以及具有最適細胞激素添加的體外誘導培養系統(SF-Mk medium):Iscove’s modified Dulbecco’s medium (IMDM)中含有HIT (8 g/L HSA,1.8 μg/ml Insulin,50.5 μg/ml Transferrin) + CC-Mk (3.0 ng/ml TPO,2.9 ng/ml IL-3,12.5 ng/ml SCF,0.5 ng/ml IL-6,1.4 ng/ml FL,1.7 ng/ml IL-9以及7.3 ng/ml GM-CSF)。經過無血清培養基(SF-HSC medium)增殖過後的造血幹細胞,將其培養在SF-Mk培養基中一個星期後,CD41a+CD61+細胞累積數量之增殖倍率可達4000倍以上。
    SF-Mk培養基在誘導與增殖CD41a+CD61+細胞的能力上,是優於Panserin 401TM,X-VIVO 10TM,X-VIVO 15TM,X-VIVO 20TM,PRO 293TM等商業無血清培養基。此外,經過無血清培養基誘導出之巨核細胞皆能保有其功能性(包含:CD41a以及CD61專有表面抗原表現,NF-E2與GATA-1基因表現,多核性分佈表現,以及體外活化血小板能力)。在動物實驗的結果上顯示,經過放射線照射後之NOD/SCID小鼠移植人類巨核細胞之後,在短時間內可以觀察到人類血小板出現於小鼠週邊血液。
    因此,我們所開發之SF-Mk培養基具有低細胞激素添加濃度、高經濟價值、短誘導時間以及高巨核細胞誘導能力等優勢;誘導後之巨核細胞皆有表現出正常功能且能在NOD/SCID小鼠體內加速人類血小板的生成。結合SF-HSC與SF-Mk培養基的全程無血清環境培養下生成巨核細胞,可以提供一個適合的巨核細胞與血小板細胞來源,未來在解決臨床上病患血小板恢復時間過長的問題,是具有應用淺力的。


    Megakaryocytes (Mks, CD41a+CD61+ cells) are the progenitor cells of platelets, and they differentiate from CD34+ hematopoietic stem cells (HSCs) and progenitor cells through complex development processes in the bone marrow (BM). Increasing the number of Mk by ex vivo induction and expansion culture for stem cells transplant may provide an approach to accelerate platelet reconstruction in patient after high-dose chemotherapy. In this study, a serum-free, stromal-free and optimal cytokine cocktail containing medium (SF-Mk medium: HIT (8 g/L HAS, 1.8 μg/ml Insulin, 50.5 μg/ml transferrin) + CC-Mk (3.0 ng/ml TPO,2.9 ng/ml IL-3,12.5 ng/ml SCF,0.5 ng/ml IL-6,1.4 ng/ml FL,1.7 ng/ml IL-9以及7.3 ng/ml GM-CSF) in Iscove’s modified Dulbecco’s medium (IMDM)) was established by 2-level factorial design and steepest ascent path methods for Mk generation from serum-free expanded CD34+ cells. After serum-free induction, the maximum expansion for the accumulated Mks increased over 4000-fold.
    Furthermore, SF-Mk medium was superior and comparable with Panserin 401TM, X-VIVO 10TM, X-VIVO 15TM, X-VIVO 20TM and PRO 293TM commercial serum-free medium in induction of Mks. The serum-free induced Mks were characterized by surface marker expression of CD41a and CD61, gene expression of NF-E2 and GATA-1, polyploidy distribution, and platelet activation ability. Importantly, transplantation of serum-free induced Mks could accelerate human platelet recovery in NOD/SCID mice. In conclusion, we have developed a serum-free Mk induction (SF-Mk) medium, and the combination of SF-Mk and SF-HSC media can generate a large amount of functional Mk efficiently. Our method may represent a promising source of Mk and platelets for future cell therapy.

    中文摘要 I 英文摘要 III 目錄 V 圖目錄 IX 表目錄 XI 第一章 研究動機與目的 1.1 前言 1 1.2 研究動機與目的 2 1.3 研究組織與架構說明 3 第二章 文獻回顧 2.1 幹細胞簡介 6 2.2 幹細胞的分類與來源 7 2.3 造血幹細胞 10 2.3.1 造血幹細胞的簡介 10 2.3.2 造血幹細胞的功能 10 2.4 巨核細胞 12 2.4.1 巨核細胞與血小板的簡介 12 2.4.2 巨核細胞的發展 14 2.4.3 調控巨核細胞生長之轉錄因子:GATA-1與NF-E2 16 2.4.4 巨核細胞相關的血液疾病 18 2.4.4.1 原發性血小板過多症 18 2.4.4.2 血栓囊血球減少症 19 2.4.4.3 臨床上解決方法與對策 21 2.5 體外誘導生成巨核細胞技術與條件 22 2.5.1 溫度 22 2.5.2 pH值 22 2.5.3 pO2值 23 2.5.4 細胞激素 23 2.6 實驗設計與分析25 2.7 巨核細胞的應用與瓶頸 26 第三章 研究方法與材料 3.1 人類臍帶血的收集 28 3.2 單核細胞的獲得 28 3.3 CD34+細胞的富集 29 3.4 細胞濃度計算 31 3.5 造血幹細胞體外無血清增殖培養 31 3.6 細胞表面抗原分析 32 3.6.1 螢光抗體接合 32 3.6.2 FACS Calibur analyzer分析步驟 32 3.7 細胞DNA多倍體分析 33 3.8 巨核細胞群落形成單位分析 34 3.9 巨核細胞誘導增殖培養基之最適設計 34 3.10 巨核細胞表現重要轉錄因子相關分析 36 3.10.1 RNA萃取 36 3.10.2 反轉錄聚合反應 36 3.10.3 DNA電泳分析 37 3.11 血小板活化分析 38 3.12 動物實驗 38 3.12.1 人類細胞移植 38 3.12.2 NOD/SCID小鼠週邊血中人類血小板之分析 39 3.12.3 NOD/SCID老鼠骨髓中人類巨核細胞之分析 40 3.13 統計分析 40 3.14 實驗材料與儀器 41 3.15 實驗藥品 42 第四章 結果與討論 4.1 臍帶血特性分析 44 4.2 臍帶血幹細胞經體外增殖前後之特性分析 44 4.3 開發含血清下巨核細胞體外誘導培養基 (part I) 45 4.3.1 在IMDM +10% FBS的培養基中篩選細胞激素 45 4.3.2 在IMDM +10% FBS的培養基中最適化細胞激素濃度 48 4.3.3 回應曲面設計 49 4.4 兩種誘導生成巨核細胞之策略比較 50 4.4.1 CD41+/CD34+細胞與CD41+/CD61+細胞誘導生成能力 52 4.4.2巨核細胞多倍體分析 52 4.4.3 NF-E2與GATA-1轉錄因子分析 53 4.4.4 血小板活化功能性分析 53 4.5 胎牛血清添加量對巨核細胞生成的影響 54 4.6 開發巨核細胞無血清體外誘導培養基 (part II) 56 4.6.1 IMDM包含7種細胞激素的培養基中篩選血清取代物 56 4.6.2 IMDM包含7種細胞激素的培養基中最適化血清取代物濃度 58 4.6.3 IMDM包含HIT的無血清培養基中篩選細胞激素 58 4.6.4 IMDM包含HIT的無血清培養基中最適化細胞激素濃度 59 4.7 比較SF-Mk medium與商業無血清培養基之差異 59 4.8 全程無血清下兩種誘導生成巨核細胞之策略比較 60 4.8.1 CD41+/CD34+細胞與CD41+/CD61+細胞誘導生成能力 60 4.8.2 巨核細胞多倍體分析 63 4.8.3 NF-E2與GATA-1轉錄因子分析 63 4.8.4 血小板活化功能性分析 64 4.9 NOD/SCID小鼠之動物實驗 64 4.9.1 NOD/SCID小鼠週邊血中人類血小板之分析 65 4.9.2 NOD/SCID老鼠骨髓中人類巨核細胞之分析 67 第五章 結論與展望 5.1 結論 97 5.2 未來展望 99 第六章 參考文獻 101 附錄 作者介紹 113

    [1] E.G. Giannini, Review article: thrombocytopenia in chronic liver disease and pharmacologic treatment options, Aliment Pharmacol Ther 23 (2006) 1055-1065.
    [2] H. Tao, L. Gaudry, A. Rice, B. Chong, Cord blood is better than bone marrow for generating megakaryocytic progenitor cells, Exp Hematol 27 (1999) 293-301.
    [3] E. Gunsilius, G. Gastl, A.L. Petzer, Hematopoietic stem cells, Biomed Pharmacother 55 (2001) 186-194.
    [4] M.S. Cairo, J.E. Wagner, Placental and/or umbilical cord blood: an alternative source of hematopoietic stem cells for transplantation, Blood 90 (1997) 4665-4678.
    [5] J.E. Wagner, J. Rosenthal, R. Sweetman, X.O. Shu, S.M. Davies, N.K. Ramsay, P.B. McGlave, L. Sender, M.S. Cairo, Successful transplantation of HLA-matched and HLA-mismatched umbilical cord blood from unrelated donors: analysis of engraftment and acute graft-versus-host disease, Blood 88 (1996) 795-802.
    [6] R. Miyazaki, H. Ogata, T. Iguchi, S. Sogo, T. Kushida, T. Ito, M. Inaba, S. Ikehara, Y. Kobayashi, Comparative analyses of megakaryocytes derived from cord blood and bone marrow, Br J Haematol 108 (2000) 602-609.
    [7] K. Tajika, H. Nakamura, K. Nakayama, K. Dan, Thrombopoietin can influence mature megakaryocytes to undergo further nuclear and cytoplasmic maturation, Exp Hematol 28 (2000) 203-209.
    [8] R. Bornstein, J. Garcia-Vela, F. Gilsanz, C. Auray, C. Cales, Cord blood megakaryocytes do not complete maturation, as indicated by impaired establishment of endomitosis and low expression of G1/S cyclins upon thrombopoietin-induced differentiation, Br J Haematol 114 (2001) 458-465.
    [9] 姚少凌, 造血幹細胞體外增殖培養技術與應用, 國立清華大學化學工程研究所博士論文 (2003).
    [10] C.L. Yao, C.H. Liu, I.M. Chu, T.B. Hsieh, S.M. Hwang, Factorial designs combined with the steepest ascent method to optimize serum-free media for ex vivo expansion of human hematopoietic progenitor cells, Enzyme and Microbial Technology 33 (2003) 343-352
    [11] M.J. Shamblott, J. Axelman, S. Wang, E.M. Bugg, J.W. Littlefield, P.J. Donovan, P.D. Blumenthal, G.R. Huggins, J.D. Gearhart, Derivation of pluripotent stem cells from cultured human primordial germ cells, Proc Natl Acad Sci 95 (1998) 13726-13731.
    [12] J.A. Thomson, J. Itskovitz-Eldor, S.S. Shapiro, M.A. Waknitz, J.J. Swiergiel, V.S. Marshall, J.M. Jones, Embryonic stem cell lines derived from human blastocysts, Science 282 (1998) 1145-1147.
    [13] G. Vogel, Breakthrough of the year. Capturing the promise of youth, Science 286 (1999) 2238-2239.
    [14] R. Kirschstein, L.R. Skirboll, Stem cells: scientific progress and futher research directions Washington, D. C.: National Institutes of Health, Department of Health and Human Services (2001).
    [15] Regenerative Medicine, Washington, D. C.: National Institutes of Health, Department of Health and Human Services (2006).
    [16] K. Takahashi, S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell 126 (2006) 663-676.
    [17] K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, S. Yamanaka, Induction of pluripotent stem cells from adult human fibroblasts by defined factors, Cell 131 (2007) 861-872.
    [18] J. Yu, M.A. Vodyanik, K. Smuga-Otto, J. Antosiewicz-Bourget, J.L. Frane, S. Tian, J. Nie, G.A. Jonsdottir, V. Ruotti, R. Stewart, Slukvin, II, J.A. Thomson, Induced pluripotent stem cell lines derived from human somatic cells, Science 318 (2007) 1917-1920.
    [19] Breakthrough of the year. The runners-up, Science 318 (2007) 1844-1849.
    [20] M. Nakagawa, M. Koyanagi, K. Tanabe, K. Takahashi, T. Ichisaka, T. Aoi, K. Okita, Y. Mochiduki, N. Takizawa, S. Yamanaka, Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts, Nat Biotechnol 26 (2008) 101-106.
    [21] K. Okita, M. Nakagawa, H. Hyenjong, T. Ichisaka, S. Yamanaka, Generation of mouse induced pluripotent stem cells without viral vectors, Science 322 (2008) 949-953.
    [22] D.S. Krause, M.J. Fackler, C.I. Civin, W.S. May, CD34: structure, biology, and clinical utility, Blood 87 (1996) 1-13.
    [23] A.H. Yin, S. Miraglia, E.D. Zanjani, G. Almeida-Porada, M. Ogawa, A.G. Leary, J. Olweus, J. Kearney, D.W. Buck, AC133, a novel marker for human hematopoietic stem and progenitor cells, Blood 90 (1997) 5002-5012.
    [24] J.E. Till, C.E. Mc, A direct measurement of the radiation sensitivity of normal mouse bone marrow cells, Radiat Res 14 (1961) 213-222.
    [25] W. Addison, On the colourless corpuscles and on the molecules and cytoblasts in the blood, London Medical Gazette 30 (1841) 144-152.
    [26] G. Bizzozero, Ueber einer neuen formbestand theildes blutes und dessen rolle bei der thrombose und der blutgerinnung, Virchows Archiv fur pathologische Anatomie und Physiologie und fur klinische Medizin 90 (1882) 261-332.
    [27] D.B. Brewer, Max Schultze (1865), G. Bizzozero (1882) and the discovery of the platelet, Br J Haematol 133 (2006) 251-258.
    [28] W.H. Howell, Observations upon the occurrence, structure, and function of the giant cells of the marrow, J Morph 4 (1890) 117-130.
    [29] J.H. Wright, The origin and nature of the blood plates, N Engl J Med 23 (1906) 643-645.
    [30] J.H. Wright, The histogenesis of the blood platelets, J Morph 21 (1910) 263-278.
    [31] L.A. Harker, Magakaryocyte quantitation, J Clin Invest 47 (1968) 452-457.
    [32] L.A. Harker, Platelet production, N Engl J Med 282 (1970) 492-494.
    [33] R.F. Levine, Isolation and characterization of normal human megakaryocytes, Br J Haematol 45 (1980) 487-497.
    [34] V.R. Deutsch, A. Tomer, Megakaryocyte development and platelet production, Br J Haematol 134 (2006) 453-466.
    [35] M. Ogawa, Differentiation and proliferation of hematopoietic stem cells, Blood 81 (1993) 2844-2853.
    [36] R.F. Levine, P. Shoff, Z.C. Han, A. Eldor, Circulating megakaryocytes and platelet production in the lungs, Prog Clin Biol Res 356 (1990) 41-52.
    [37] E.M. Mazur, Megakaryocytopoiesis and platelet production: a review, Exp Hematol 15 (1987) 340-350.
    [38] S.R. Patel, J.H. Hartwig, J.E. Italiano, Jr., The biogenesis of platelets from megakaryocyte proplatelets, J Clin Invest 115 (2005) 3348-3354.
    [39] K. Ravid, J. Lu, J.M. Zimmet, M.R. Jones, Roads to polyploidy: the megakaryocyte example, J Cell Physiol 190 (2002) 7-20.
    [40] A.V. Hoffbrand, J.E. Pettit, 血液學精要/Essential Haematology, 藝軒圖書 (2004).
    [41] J.N. George, Platelets, Lancet 355 (2000) 1531-1539.
    [42] K. Terui, Y. Takahashi, J. Kitazawa, T. Toki, M. Yokoyama, E. Ito, Expression of transcription factors during megakaryocytic differentiation of CD34+ cells from human cord blood induced by thrombopoietin, Tohoku J Exp Med 192 (2000) 259-273.
    [43] K.E. Elagib, F.K. Racke, M. Mogass, R. Khetawat, L.L. Delehanty, A.N. Goldfarb, RUNX1 and GATA-1 coexpression and cooperation in megakaryocytic differentiation, Blood 101 (2003) 4333-4341.
    [44] J.E. Visvader, A.G. Elefanty, A. Strasser, J.M. Adams, GATA-1 but not SCL induces megakaryocytic differentiation in an early myeloid line, Embo J 11 (1992) 4557-4564.
    [45] H. Iwasaki, S. Mizuno, R.A. Wells, A.B. Cantor, S. Watanabe, K. Akashi, GATA-1 converts lymphoid and myelomonocytic progenitors into the megakaryocyte/erythrocyte lineages, Immunity 19 (2003) 451-462.
    [46] J.C. Kostyak, U.P. Naik, Megakaryopoiesis: transcriptional insights into megakaryocyte maturation, Front Biosci 12 (2007) 2050-2062.
    [47] H. Schulze, R.A. Shivdasani, Molecular mechanisms of megakaryocyte differentiation, Semin Thromb Hemost 30 (2004) 389-398.
    [48] A.G. Muntean, J.D. Crispino, Differential requirements for the activation domain and FOG-interaction surface of GATA-1 in megakaryocyte gene expression and development, Blood 106 (2005) 1223-1231.
    [49] P. Lecine, R.A. Shivdasani, Cellular and molecular biology of megakaryocyte differentiation in the absence of lineage-restricted transcription factors, Stem Cells 16 Suppl 2 (1998) 91-95.
    [50] J. Levin, J.P. Peng, G.R. Baker, J.L. Villeval, P. Lecine, S.A. Burstein, R.A. Shivdasani, Pathophysiology of thrombocytopenia and anemia in mice lacking transcription factor NF-E2, Blood 94 (1999) 3037-3047.
    [51] L. Pang, M.J. Weiss, M. Poncz, Megakaryocyte biology and related disorders, J Clin Invest 115 (2005) 3332-3338.
    [52] J.J. Michiels, Z.N. Berneman, W. Schroyens, H.H. Van Vliet, Pathophysiology and treatment of platelet-mediated microvascular disturbances, major thrombosis and bleeding complications in essential thrombocythaemia and polycythaemia vera, Platelets 15 (2004) 67-84.
    [53] K. Ihara, E. Ishii, M. Eguchi, H. Takada, A. Suminoe, R.A. Good, T. Hara, Identification of mutations in the c-mpl gene in congenital amegakaryocytic thrombocytopenia, Proc Natl Acad Sci 96 (1999) 3132-3136.
    [54] M.H. Freedman, Z. Estrov, Congenital amegakaryocytic thrombocytopenia: an intrinsic hematopoietic stem cell defect, Am J Pediatr Hematol Oncol 12 (1990) 225-230.
    [55] S.F. Williams, W.J. Lee, J.G. Bender, T. Zimmerman, P. Swinney, M. Blake, J. Carreon, M. Schilling, S. Smith, D.E. Williams, F. Oldham, D. Van Epps, Selection and expansion of peripheral blood CD34+ cells in autologous stem cell transplantation for breast cancer, Blood 87 (1996) 1687-1691.
    [56] G. Mattia, L. Milazzo, F. Vulcano, M. Pascuccio, G. Macioce, H.J. Hassan, A. Giampaolo, Long-term platelet production assessed in NOD/SCID mice injected with cord blood CD34+ cells, thrombopoietin-amplified in clinical grade serum-free culture, Exp Hematol 36 (2008) 244-252.
    [57] I.J. Webb, K.C. Anderson, Risks, costs, and alternatives to platelet transfusions, Leuk Lymphoma 34 (1999) 71-84.
    [58] F. Bertolini, M. Battaglia, P. Pedrazzoli, G.A. Da Prada, A. Lanza, D. Soligo, L. Caneva, B. Sarina, S. Murphy, T. Thomas, G.R. della Cuna, Megakaryocytic progenitors can be generated ex vivo and safely administered to autologous peripheral blood progenitor cell transplant recipients, Blood 89 (1997) 2679-2688.
    [59] S. Scheding, M. Bergmannn, G. Rathke, W. Vogel, W. Brugger, L. Kanz, Additional transplantation of ex vivo generated megakaryocytic cells after high-dose chemotherapy, Haematologica 89 (2004) 630-631.
    [60] M. Schattner, P. Lefebvre, S.S. Mingolelli, C.L. Goolsby, A. Rademaker, J.G. White, D. Foster, D. Green, I. Cohen, Thrombopoietin-stimulated ex vivo expansion of human bone marrow megakaryocytes, Stem Cells 14 (1996) 207-214.
    [61] A. Blair, C.L. Baker, D.H. Pamphilon, P.A. Judson, Ex vivo expansion of megakaryocyte progenitor cells from normal bone marrow and peripheral blood and from patients with haematological malignancies, Br J Haematol 116 (2002) 912-919.
    [62] S.Y. Woo, J.H. Kie, K.H. Ryu, H.S. Moon, W.S. Chung, D.H. Hwang, S.K. Kim, T.H. Han, M.J. Hahn, Y.H. Chong, H.K. Park, J.Y. Seoh, Megakaryothrombopoiesis during ex vivo expansion of human cord blood CD34+ cells using thrombopoietin, Scand J Immunol 55 (2002) 88-95.
    [63] R.J. Su, K. Li, M. Yang, X.B. Zhang, K.S. Tsang, T.F. Fok, C.K. Li, P.M. Yuen, Platelet-derived growth factor enhances ex vivo expansion of megakaryocytic progenitors from human cord blood, Bone Marrow Transplant 27 (2001) 1075-1080.
    [64] P.H. Shaw, D. Gilligan, X.M. Wang, P.F. Thall, S.J. Corey, Ex vivo expansion of megakaryocyte precursors from umbilical cord blood CD34 cells in a closed liquid culture system, Biol Blood Marrow Transplant 9 (2003) 151-156.
    [65] P. Halle, C. Rouzier, J. Kanold, N. Boiret, C. Rapatel, G. Mareynat, A. Tchirkov, M. Berger, P. Travade, J. Bonhomme, F. Demeocq, Ex vivo expansion of CD34+/CD41+ late progenitors from enriched peripheral blood CD34+ cells, Ann Hematol 79 (2000) 13-19.
    [66] K. Kratz-Albers, S. Scheding, R. Mohle, H.J. Buhring, C.M. Baum, J.P. Mc Kearn, T. Buchner, L. Kanz, W. Brugger, Effective ex vivo generation of megakaryocytic cells from mobilized peripheral blood CD34(+) cells with stem cell factor and promegapoietin, Exp Hematol 28 (2000) 335-346.
    [67] C. Proulx, N. Dupuis, I. St-Amour, L. Boyer, R. Lemieux, Increased megakaryopoiesis in cultures of CD34-enriched cord blood cells maintained at 39 degrees C, Biotechnol Bioeng 88 (2004) 675-680.
    [68] H. Yang, W.M. Miller, E.T. Papoutsakis, Higher pH promotes megakaryocytic maturation and apoptosis, Stem Cells 20 (2002) 320-328.
    [69] K.S. Carswell, E.T. Papoutsakis, Extracellular pH affects the proliferation of cultured human T cells and their expression of the interleukin-2 receptor, J Immunother 23 (2000) 669-674.
    [70] S.S. Mostafa, W.M. Miller, E.T. Papoutsakis, Oxygen tension influences the differentiation, maturation and apoptosis of human megakaryocytes, Br J Haematol 111 (2000) 879-889.
    [71] J. Katahira, H. Mizoguchi, Improvement of culture conditions for human megakaryocytic and pluripotent progenitor cells by low oxygen tension, Int J Cell Cloning 5 (1987) 412-420.
    [72] J.G. Drachman, Role of thrombopoietin in hematopoietic stem cell and progenitor regulation, Curr Opin Hematol 7 (2000) 183-190.
    [73] M. Murone, D.A. Carpenter, F.J. de Sauvage, Hematopoietic deficiencies in c-mpl and TPO knockout mice, Stem Cells 16 (1998) 1-6.
    [74] R.A. Briddell, E. Bruno, R.J. Cooper, J.E. Brandt, R. Hoffman, Effect of c-kit ligand on in vitro human megakaryocytopoiesis, Blood 78 (1991) 2854-2859.
    [75] E. Bruno, R. Hoffman, Effect of interleukin 6 on in vitro human megakaryocytopoiesis: its interaction with other cytokines, Exp Hematol 17 (1989) 1038-1043.
    [76] M. Aglietta, C. Monzeglio, F. Sanavio, F. Apra, S. Morelli, A. Stacchini, W. Piacibello, F. Bussolino, G. Bagnara, G. Zauli, et al., In vivo effect of human granulocyte-macrophage colony-stimulating factor on megakaryocytopoiesis, Blood 77 (1991) 1191-1194.
    [77] M.S. Gordon, Thrombopoietic activity of recombinant human interleukin 11 in cancer patients receiving chemotherapy, Cancer Chemother Pharmacol 38 Suppl (1996) S96-98.
    [78] Y. Feng, L. Zhang, Z.J. Xiao, B. Li, B. Liu, C.G. Fan, X.F. Yuan, Z.C. Han, An effective and simple expansion system for megakaryocyte progenitor cells using a combination of heparin with thrombopoietin and interleukin-11, Exp Hematol 33 (2005) 1537-1543.
    [79] M.Z. Ratajczak, J. Ratajczak, J. Ford, R. Kregenow, W. Marlicz, A.M. Gewirtz, FLT3/FLK-2 (STK-1) Ligand does not stimulate human megakaryopoiesis in vitro, Stem Cells 14 (1996) 146-150.
    [80] H. Fujiki, T. Kimura, H. Minamiguchi, S. Harada, J. Wang, M. Nakao, S. Yokota, Y. Urata, Y. Ueda, H. Yamagishi, Y. Sonoda, Role of human interleukin-9 as a megakaryocyte potentiator in culture, Exp Hematol 30 (2002) 1373-1380.
    [81] S. van den Oudenrijn, M. de Haas, J. Calafat, C.E. van der Schoot, A.E. von dem Borne, A combination of megakaryocyte growth and development factor and interleukin-1 is sufficient to culture large numbers of megakaryocytic progenitors and megakaryocytes for transfusion purposes, Br J Haematol 106 (1999) 553-563.
    [82] R. Berthier, O. Valiron, A. Schweitzer, G. Marguerie, Serum-free medium allows the optimal growth of human megakaryocyte progenitors compared with human plasma supplemented cultures: role of TGF beta, Stem Cells 11 (1993) 120-129.
    [83] D.C. Montgomery, Design and analysis of experiments, 6th ed., Hoboken, NJ : John Wiley & Sons (2005).
    [84] R.F.G. Robert L. Mason, James L.Hess, Statistical design and analysis of experiments: With applications to engineering and science, 2nd ed ed., New York :Wiley (2003).
    [85] P. Lefebvre, J.N. Winter, L.E. Kahn, J.G. Giri, I. Cohen, Megakaryocyte ex vivo expansion potential of three hematopoietic sources in serum and serum-free medium, J Hematother 8 (1999) 199-208.
    [86] L. Sun, P. Tan, C. Yap, W. Hwang, L.P. Koh, C.K. Lim, S.E. Aw, In vitro biological characteristics of human cord blood-derived megakaryocytes, Ann Acad Med Singapore 33 (2004) 570-575.
    [87] M. Pick, A. Eldor, D. Grisaru, A.R. Zander, M. Shenhav, V.R. Deutsch, Ex vivo expansion of megakaryocyte progenitors from cryopreserved umbilical cord blood. A potential source of megakaryocytes for transplantation, Exp Hematol 30 (2002) 1079-1087.
    [88] L.F. Schipper, A. Brand, N. Reniers, C.J. Melief, R. Willemze, W.E. Fibbe, Differential maturation of megakaryocyte progenitor cells from cord blood and mobilized peripheral blood, Exp Hematol 31 (2003) 324-330.
    [89] S. van den Oudenrijn, A.E. von dem Borne, M. de Haas, Differences in megakaryocyte expansion potential between CD34(+) stem cells derived from cord blood, peripheral blood, and bone marrow from adults and children, Exp Hematol 28 (2000) 1054-1061.
    [90] S. Bruno, M. Gunetti, L. Gammaitoni, A. Dane, G. Cavalloni, F. Sanavio, F. Fagioli, M. Aglietta, W. Piacibello, In vitro and in vivo megakaryocyte differentiation of fresh and ex-vivo expanded cord blood cells: rapid and transient megakaryocyte reconstitution, Haematologica 88 (2003) 379-387.
    [91] J.A. Liu Yin, J.A. Adams, M.L. Brereton, A. Hann, B.D. Harrison, M. Briggs, Megakaryopoiesis in vitro in myelodysplastic syndromes and acute myeloid leukaemia: effect of pegylated recombinant human megakaryocyte growth and development factor in combination with other growth factors, Br J Haematol 108 (2000) 743-746.
    [92] J.H. Kie, W.I. Yang, M.K. Lee, T.J. Kwon, Y.H. Min, H.O. Kim, H.S. Ahn, S.A. Im, H.L. Kim, H.Y. Park, K.H. Ryu, W.S. Chung, M.H. Shin, Y.J. Jung, S.Y. Woo, H.K. Park, J.Y. Seoh, Decrease in apoptosis and increase in polyploidization of megakaryocytes by stem cell factor during ex vivo expansion of human cord blood CD34+ cells using thrombopoietin, Stem Cells 20 (2002) 73-79.
    [93] J.L. Williams, G.G. Pipia, N.S. Datta, M.W. Long, Thrombopoietin requires additional megakaryocyte-active cytokines for optimal ex vivo expansion of megakaryocyte precursor cells, Blood 91 (1998) 4118-4126.
    [94] G. Mattia, F. Vulcano, L. Milazzo, A. Barca, G. Macioce, A. Giampaolo, H.J. Hassan, Different ploidy levels of megakaryocytes generated from peripheral or cord blood CD34+ cells are correlated with different levels of platelet release, Blood 99 (2002) 888-897.
    [95] Y. van Hensbergen, L.F. Schipper, A. Brand, M.C. Slot, M. Welling, A.J. Nauta, W.E. Fibbe, Ex vivo culture of human CD34+ cord blood cells with thrombopoietin (TPO) accelerates platelet engraftment in a NOD/SCID mouse model, Exp Hematol 34 (2006) 943-950.
    [96] K. Taguchi, M. Saitoh, Y. Arai, K. Momose, Y. Ogawa, S. Yasuda, K. Miyata, Disparate effects of interleukin 11 and thrombopoietin on megakaryocytopoiesis in vitro, Cytokine 15 (2001) 241-249.
    [97] C.E. Sandstrom, W.M. Miller, E.T. Papoutsakis, Review: serum-free media for cultures of primitive and mature hematopoietic cells, Biotechnol Bioeng 43 (1994) 706-733.
    [98] V. Cortin, A. Garnier, N. Pineault, R. Lemieux, L. Boyer, C. Proulx, Efficient in vitro megakaryocyte maturation using cytokine cocktails optimized by statistical experimental design, Exp Hematol 33 (2005) 1182-1191.
    [99] D.L. Greiner, R.A. Hesselton, L.D. Shultz, SCID mouse models of human stem cell engraftment, Stem Cells 16 (1998) 166-177.
    [100] L.E. Perez, H.M. Rinder, C. Wang, J.B. Tracey, N. Maun, D.S. Krause, Xenotransplantation of immunodeficient mice with mobilized human blood CD34+ cells provides an in vivo model for human megakaryocytopoiesis and platelet production, Blood 97 (2001) 1635-1643.
    [101] M.R. Tijssen, P.B. van Hennik, F. di Summa, J.J. Zwaginga, C.E. van der Schoot, C. Voermans, Transplantation of human peripheral blood CD34-positive cells in combination with ex vivo generated megakaryocytes results in fast platelet formation in NOD/SCID mice, Leukemia 22 (2008) 203-208.
    [102] S. Bruno, M. Gunetti, L. Gammaitoni, E. Perissinotto, L. Caione, F. Sanavio, F. Fagioli, M. Aglietta, W. Piacibello, Fast but durable megakaryocyte repopulation and platelet production in NOD/SCID mice transplanted with ex-vivo expanded human cord blood CD34+ cells, Stem Cells 22 (2004) 135-143.
    [103] R. Feng, C. Shimazaki, T. Inaba, R. Takahashi, H. Hirai, T. Kikuta, T. Sumikuma, N. Yamagata, E. Ashihara, N. Fujita, M. Nakagawa, CD34+/CD41a+ cells best predict platelet recovery after autologous peripheral blood stem cell transplantation, Bone Marrow Transplant 21 (1998) 1217-1222.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE