研究生: |
蕭伃真 |
---|---|
論文名稱: |
測量碘分子超精細譜線在548.5 nm躍遷頻率 Frequency Measurement of Molecular Iodine Hyperfine Transitions at 548.5 nm |
指導教授: | 王立邦 |
口試委員: |
施宙聰
周哲仲 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 碘分子 、調製傳遞光譜法 、參考頻率 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
碘穩頻系統常用來當作雷射光頻率標準。我們測量了127I2 P(28) (24-0) 譜線的絕對頻率。碘分子與鋰離子的躍遷頻率差了數個GHz,因此碘分子的頻率測量可以用來當作鋰離子光譜的頻率標準。在此實驗中,我們用1097 nm的外腔式雷射(external-cavity diode laser) 和一個倍頻系統來產生548.5 nm的雷射光,並且用調製傳遞光譜法 (modulation transfer spectroscopy) 來得到碘分子光譜。我們在碘分子蒸氣壓在7.8 Pa時測量a1, a10和a15譜線。我們測量了碘蒸氣壓對躍遷頻率的影響,並用此8.9(1.2) kHz/Pa修正得到絕對躍遷頻率。最後a1, a10, a15 譜線頻率為546437908826(12) kHz, 546438483384(12) kHz以及 546438771985(12) kHz。實驗結果與IodineSpec5的計算值相符合。我們也有探討氣壓與雷射功率對線寬的影響。在未來的研究中,我們將會測量其他的540 nm到550 nm範圍的碘分子躍遷譜線,其中有一些譜線將可以當作鋰離子光譜實驗的參考頻率。
The iodine stabilization system is usually used as an optical frequency standard. We report the absolute frequency measurement of 127I2 P(28) (24-0) lines. The frequency of iodine transitions is several GHz away from the Li+ ion transition and can be used as reference for lithium ion spectroscopy. In this experiment, we use 1097 nm external-cavity diode laser and a double system to produce 548.5 nm light, and use modulation transfer spectroscopy to obtain the iodine spectrum. We measure a1, a10, a15 lines, and they are measured at a vapor pressure of 7.8 Pa. As a result, we correct them by the pressure shift which is measured to be 8.9(1.2) kHz/Pa. The final results of the a1, a10, a15 are 546437908826(12) kHz, 546438483384(12) kHz, and 546438771985(12) kHz respectively. The results agree with the calculated values of IondineSpec5. The effect of pressure and power broadening are also investigated. For the future work, we will measure other transitions of molecular iodine between 540-550 nm, and some of them can also be used as references for lithium ion spectroscopy.
1. R. Felder, Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards, Metrologia, 42, 323-325 ( 2005)
2. The data for the various recommended radiations are updated on the BIPM website (www.bipm.org/en/publications/mep.html).
3. From Basics and usage of the program IodineSpec5
4. H. Schnatz, B. Lipphardt, J. Helmcke, F. Riehle, and G. Zinner, First Phase-Coherent Frequency Measurement of visible radiation, Physical Review Letters, 76, 18–21 (1996)
5. S. A. Diddams1, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel1, D. J. Wineland, An optical clock based on a single trapped 199Hg+ ion, Science, 293, 825-828 (2001)
6. J. Zhang, Z. H. Lu, and L. J. Wang, Absolute frequency measurement of the molecular iodine hyperfine components near 560 nm with a solid-state laser source, Applied Optics, 48, 5629–5635 (2009)
7. S. N. Bagayev, V. P. Chebotayev, and E. A. Titov, Saturated absorption lineshape under the transit-time condition, Laser Physics, 4, 224-292 (1994)
8. P. Hassanzadeh, C. Thompson, and L. Andrews, Absorption-spectra of tellurium clusters in solid argon, Journal of Physical Chemistry, 96, 8246-8249 (1992)
9. W. A. van Wijngaarden, and G. A. Noble, Precision laser spectroscopy of Li+ and neutral lithium, Lecture Notes in Physics, 745, 111-129 (2008)
10. E. Riis, et al., Lamb shifts and hyperfine structure in 6Li+ and 7Li+ : theory and experiment. Physical Review A, 49, 207-220 (1994)
11. C. J. Sansonetti, Precise measurements of hyperfine components in the spectrum of molecular iodine, Journal of the Optical Society of America B, 1913-1920 (1997)
12. H. R. Simonsen, Iodine-stabilized extended cavity diode laser at λ = 633 nm., IEEE Transactions on Intrumentation and Measurement, 46, 141-144 (1997)
13. Wolfgang Demtröder, Atoms, molecules and photons, 1st ed. Springer-Verlag Berlin Heidelberg (2006)
14. Wolfgang Demtröder, Laser spectroscopy Vol. 2; experimental techniques, 4th ed. Springer-Verlag Berlin Heidelberg (2008)
15. M. Nakazawa, Phase-sensitive detection on Lorentzian line-shape and its application to frequency stabilization of lasers, Journal of Applied Physics, 59, 2297-2305 (1986)
16. B. E. A. Saleh and M. C.Teich, Fundamentals of photonics, 2nd ed. WILEY-INTERSCIENCE (2007)
17. R. A. Boyd, J. L. Bliss, and K.G. Libbrecht, Teaching physics with 670-nm diode lasers - experiments with Fabry-Perot cavities, American Journal of Physics, 64, 1109-1116 (1996)
18. From the instruction manual for acousto-optic modulator, AOM-402AF1, IntraAction Corp..
19. E. A. Donley, et al., Double-pass acousto-optic modulator system, Review of Scientific Instruments, 76 ( 2005)
20. Markku Vainio, Diode lasers with optical feedback and optical injection, Doctoral dissertation, Helsinki University of Technology (2006)
21. L. J Gillespie, and L. H. D. Fraser, The normal vapor pressure of crystalline iodine, Journal of the American Chemical Society, 58, 2260-2263 (1936)
22. J. J. Snyder, et al., High-sensitivity nonlinear spectroscopy using a frequency-offset pump, Optics Letters, 5, 163-165 (1980)
23. A. Y. Nevsky, et al., Frequency comparison and absolute frequency measurement of I2-stabilized lasers at 532 nm, Optics Communications, 192, 263-272 (2001)
24. U. Brand, Frequency stabilization of a He–Ne laser at 543.5 nm wavelength using frequency-modulation spectroscopy, Optic Communications, 100, 361–373 (1993)
25. W.-Y. Cheng and J.-T. Shy, Wavelength standard at 543 nm and the corresponding 127I2 hyperfine transitions, Journal of the Optical Society of America B, 18, 363-369 (2001)
26. G. P. Barwood and W. R. C. Rowley, Characteristics of a 127I2 - Stabilized Dye Laser at 576 nm, Metrologia, 20 19-23 (1984)
27. M. Bisi and F. Bertinetto, Frequency reproducibility of He-Ne lasers at λ = 612 nm using the frequency modulation spectroscopy technique, Metrologia, 34, 451-457 (1997).
28. M. Merimaa, P. Kokkonen, K. Nyholm and E. Ikonen, Portable frequency standard at 633 nm with compact external-cavity diode laser, Metrologia, 38, 311-318 (2001)