簡易檢索 / 詳目顯示

研究生: 凌國銓
Guo-Chian Ling
論文名稱: 奈米碳管/環氧樹脂複合材料之電磁屏蔽與機電性質研究
Electromagnetic Interference Shielding, Electrical and Mechanical Properties of Carbon Nanotube/Epoxy Composites
指導教授: 葉孟考
Meng-Kao Yeh
戴念華
Nyan-Hwa Tai
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 110
中文關鍵詞: 多壁奈米碳管複合材料電磁波屏蔽效率機械性質導電度
外文關鍵詞: MWNT, Composite material, EMI SE, Mechanical property, Electrical conductivity
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高分子材料為常用之基材,但機械與電熱性質不佳,需加入補強材改善之。奈米碳管具低比重、高剛性、高強度與優越之物理性質,使其成為極佳之補強材料;奈米碳管同時具有高長徑比與優越之電氣性質,使奈米碳管可應用於電磁屏蔽材料。本研究使用化學氣相沉積法成長之多壁碳管補強熱固性環氧樹脂,探討碳管含量與補強形式對電磁波屏蔽效率、反射與吸收機制、電氣與機械性質之影響。電磁波屏蔽量測結果顯示,加入多壁奈米碳管使材料具有電磁波屏蔽之功能,以平鋪式碳管補強之試片表現尤佳。反射與吸收機制之量測結果顯示,添加碳管使材料之反射比例提升且屏蔽機制以反射為主。電性量測結果顯示,加入多壁奈米碳管可提升材料之導電度,當碳管含量達1.0 wt%時可提升導電度約14~15個數量級。單軸拉伸試驗結果顯示,添加碳管可提升材料之機械性質,平鋪式碳管補強之試片顯示較佳之楊氏模數與拉伸強度。最後以場發射掃描式電子顯微鏡(FESEM)觀察試片破壞面之微觀結構,可見混合製程試片之碳管均勻分散於基材中,以及平鋪製程之層層堆疊顯示平鋪式碳管保留其網狀結構。


    Carbon nanotubes (CNTs) were used as the reinforcements in the polymer composites, because of their outstanding physical properties. CNTs were also used in the application of electromagnetic interference (EMI), because of their exceptional electrical properties. In this paper, the multi-walled carbon nanotubes (MWNTs) synthesized by the chemical vapor deposition (CVD) method were used to reinforce the epoxy resin by mixing and spreading processes. The influence of the weight percentage and the reinforced form of MWNTs on electromagnetic interference shielding effectiveness (EMI SE), electrical and mechanical properties were investigated. From experimental results, the EMI SE is improved with increasing content of MWNTs. The composites fabricated by the spreading process have better shielding effectiveness than those by mixing process. The characteristics of EMI shielding change from absorbance to reflectance when the content of MWNTs increases. The electrical conductivity of composites, reinforced by 1.0 wt% of MWNT, increases to 100~1000 Tera □-1-cm-1. The Young’s modulus and the tensile strength of composite reinforced by 2.0 wt% MWNTs, made by the spreading process, increase 81.29% and 30.03% respectively. The network structure of MWNTs, resulting from the spreading process, can be found from the SEM images of the tensile failure surfaces.

    摘要 I 誌謝 III 目錄 IV 圖表目錄 VII 第一章、緒論 1 1.1研究動機 2 1.2文獻回顧 3 1.2.1電磁波屏蔽效率 3 1.2.2導電性質 5 1.2.3機械性質 6 1.3研究主題 10 第二章、屏蔽理論與數據分析 11 2.1電磁波干擾原理 11 2.1.1電磁波干擾分類 11 2.1.2電磁波輻射 12 2.2電磁波屏蔽理論 13 2.3電磁屏蔽技術 15 2.4數據分析 17 第三章、實驗設備與步驟 19 3.1實驗儀器 19 3.1.1 CVD系統(圖3.2) 19 3.1.2真空烘箱(圖3.3) 19 3.1.3磁力攪拌機(圖3.4) 20 3.1.4超音波震動機(圖3.5) 20 3.1.5熱壓機(圖3.6) 20 3.1.6鑽石切割機(圖3.7) 20 3.1.7場發射掃描式電子顯微鏡(圖3.8) 21 3.1.8電阻量測儀(圖3.9) 21 3.1.9超高電阻量測儀(圖3.10) 21 3.1.10電磁屏蔽效率量測設備(圖3.11) 21 3.1.11向量網路分析儀(圖3.12) 22 3.1.12拉伸試驗機(圖3.13) 22 3.1.13電磁屏蔽效率量測設備(圖3.14) 22 3.2 CVD製備奈米碳管 22 3.3基材 23 3.4試片製作 24 3.4.1測試試片之尺寸 24 3.4.2預混材製作(Preprocess A) 24 3.4.3預混材製作(Preprocess B) 25 3.4.4熱壓硬化 26 3.5電性量測 26 3.6電磁屏蔽量測 27 3.7拉伸測試 27 3.8拉曼光譜 28 3.9場發射掃描式電子顯微鏡 28 第四章、結果與討論 29 4.1多壁奈米碳管成長 29 4.2電性量測 29 4.3電磁屏蔽效率量測 30 4.3.1奈米碳管/環氧樹脂複合材料 31 4.3.2多層複材試片之屏蔽效率 32 4.4反射與吸收 34 4.4.1奈米複合材料之反射與吸收 35 4.4.2多層試片之反射與吸收 36 4.5單軸拉伸試驗 38 4.6場發射掃描式電子顯微鏡之觀察 39 第五章、結論 41 參考文獻 43 圖表 48

    1. S. Iijima, “Graphictic carbon,” Nature, Vol. 354, pp. 56-58, 1991.
    2. E. T. Thostenson, Z. Ren and T. W. Chou, “Advances in the science and technology of carbon nanotubes and their composites: a review,” Composite Science and Technology, Vol. 61, pp. 1899-1912, 2001.
    3. H. Guo, T. V. Sreekumar, T. Liu, M. Minus and S. Kumar, “Structure and properties of polyacrylonitrile/single wall carbon nanotube composite films,” Polymer, Vol. 46, pp. 3001-3005, 2005.
    4. 許枝峰,周文祥與鄭慧如,奈米碳管電磁屏蔽效應之特性研究,第二十七屆高分子研討會論文專輯,pp. 252,中華民國九十三年。
    5. 孫志光,奈米碳管複合材料電磁波屏蔽性質之研究,國立清華大學材料科學及工程學系碩士論文,2005。
    6. N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen and P. C. Eklund, ”Electromagnetic interference (EMI) sheilding of single-walled carbon nanotube epoxy composites,“ Nano Letters, Vol. 6, pp. 1141-1145, 2006.
    7. Y. Yang, M. C. Gupta, K .L. Dudley, and R. W. Lawrence, ”Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding,“ Nano Letters, Vol. 5, pp. 2131-2134, 2005.
    8. H. M. Kim, K. Kim, S. J. Lee, J. Joo, H. S. Yoon, S. J. Cho, S. C. Lyu and C. J. Lee, ”Charge transport properties of composites of multiwalled carbon nanotube with metal catalyst and polymer: application to electromagnetic interference shielding,“ Current Applied Physics, Vol. 4, pp. 577-580, 2004.
    9. H. M. Kim, K. Kim, C. Y. Lee, J. Joo, S. J. Cho, H. S. Yoon, D. A. Pejakovic, J. W. Yoo and A. J. Epstein, ”Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst,“ Applied Physics Letters, Vol. 4, pp. 589-591, 2004.
    10. C. C. M. Ma, Y. L. Huang, H. C. Kuan and Y. S. Chiu, “Preparation and electromagnetic interference shielding characteristic of novel carbon-nanotube/ siloxane/poly-(urea urethane) Nanocomposites,” Journal of Polymer Science: Part B: Polymer Physics, Vol. 43, pp. 345-358, 2005.
    11. H. L. Wu, C. C. M. Ma, Y. T. Yang, H. C. Kuan, C. C. Yang and C. L. Chiang, “Morphology, electrical resistance, electromagnetic interference shielding and mechanical properties of functionalized MWNT and poly(urea urethane) nanocomposites,” Journal of Polymer Science: Part B: Polymer Physics, Vol. 44, pp. 1096-1105, 2006.
    12. C. Y. Huang and J. F. Pai, “Optimum conditions of electroless nickel plating on carbon fibers for EMI shielding effectiveness of ENCF/ABS composites,” European Polymer Journal, Vol. 34, pp. 261-267, 1998.
    13. C. Y. Huang and C. C. Wu, “The EMI shielding effectiveness of PC/ABS/nickel-coated-carbon-fibre composites,” European Polymer Journal, Vol. 36, pp. 2729-2737, 2000.
    14. C. Y. Huang, W. W. Mo and M. L. Roan, “Studies on the influence of double-layer electroless metal deposition on the electromagnetic interference shielding effectiveness of carbon fiber/ABS composites, ”Surface and Coatings Technology, Vol. 184, pp. 163-169, 2004.
    15. V. Skákalová, U. Dettlaff-Weglikowska and S. Roth, “Electrical and mechanical properties of nanocomposites of single wall carbon nanotubes with PMMA,” Synthetic Metals, Vol. 152, pp. 349-352, 2005.
    16. X. Jiang, Y. Bin and M. Matsuo, “Electrical and mechanical properties of polyimide-carbon nanotubes composites fabricated by in situ polymerization,” Polymer, Vol. 46, pp. 7418-7424, 2005.
    17. A. Allaoui, S. Bai, H. M. Cheng and J. B. Bai, “Mechanical and electrical properties of a MWNT/epoxy composite,” Composites Science and Technology, Vol. 62, pp. 1993-1998, 2002.
    18. T. McNally, P. Pötschke, P. Halley, M. Murphy, D. Martin, S. E J. Bell, G. P. Brennan, D. Bein, P. Lemoine and J.P. Quinn, “Polyethylene multiwalled carbon nanotube composites,” Polymer, Vol. 46, pp. 8222-8232, 2005.
    19. J. B. Bai and A. Allaoui, “Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites - Experimental investigation,” Composites Part A, Vol. 34, pp. 689-694, 2003.
    20. Q. Zhang, S. Rastogi, D. Chen, D. Lippits and P. J. Lemstra, “Low percolation threshold in single-walled carbon nanotube/high density polyethylene composites prepared by melt processing technique,” Carbon, Vol. 44, pp. 778-785, 2006.
    21. V. Mottaghitalab, G. M. Spinks and G. G. Wallace, “The influence of carbon nanotubes on mechanical and electrical properties of polyaniline fibers,” Synthetic Metals, Vol. 152, pp. 77-80, 2005.
    22. Y. Bin, M. Mine, A. Koganemaru, X. Jiang and M. Mastuo, “Morphology and mechanical and electrical properties of oriented PVA-VGCF and PVA-MWNT composites,” Polymer, Vol. 47, pp. 1308-1317, 2006.
    23. H. G. Chae, T. V. Sreekumar, T. Uchida, S. Kumar, “A comparison of reinforcement efficiency of various types of carbon nanotubes in polyacrylonitrile fiber,” Polymer, Vol. 46, pp. 10925-10935, 2005.
    24. J. D. Fidelus, E. Wiesel, F. H. Gojny, K. Schulte and H. D. Wagner, “Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites,” Composites Part A, Vol. 36, pp. 1555-1561, 2005.
    25. L. Ci, and J. Bai, “The reinforcement role of carbon nanotubes in epoxy composites with different matrix stiffness,” Composites Science and Technology, Vol. 66, pp. 599-603, 2006.
    26. Y. Li, K. Wang, J. Wei, Z. Gu, Z. Wang, J. Luo and D. Wu, “Tensile properties of long aligned double-walled carbon nanotube strands,” Carbon, Vol. 43, pp. 31-35, 2005.
    27. L. M. Ericson, J. F. Peng, V. A. Davis, W. Zhou, J. Sulpizo, Y. Wang, R. Booker, J. Vavro, C. Guthy, A. N. G. Parra-Vasquez, C. Kittrell, G. Lavin, H. Schmidt, W. W. Adams, W. E. Billups, M. Pasquali, W. F. Hwang, R. H. Hauge, J. E. Fischer and R. E. Smalley, “Macroscopic, Neat, Single-Walled Carbon Nanotube Fibers,” Science, Vol. 35, pp. 1447-1450, 2004.
    28. D. S. Lim, J. W. An and H. J. Lee, “Effect of carbon nanotube addition on the tribological behavior of carbon/carbon composites,” Wear, Vol. 252, pp. 512-517, 2002.
    29. M. Lu, K. T. Lau, W. Y. Tam, K. Liao, “Enhancement of Vicker’s hardness of nanoclay-supported nanotube reinforced novel polymer composites,” Carbon, Vol. 44, pp. 381-392, 2006.
    30. W. Chen, X. Tao, P. Xue and X. Cheng, “Enhanced mechanical properties and morphological characterizations of poly(vinyl alcohol)–carbon nanotube composite films,” Applied Surface Science, Vol. 252, pp. 1404-1409, 2005.
    31. F. J. Owens, “Properties of composites of fluorinated single walled carbon nanotubes and polyacrylonitrile,” Materials Letters, Vol. 59, pp. 3720-3723, 2005.
    32. F. H. Gojny, M. H. G. Wichmann, U. Kopke, B. Fiedler and K. Schulte, “Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content,” Composite Science and Technology, Vol. 64, pp. 2363-2371, 2004.
    33. M. A. L. Manchado, L. Valentini, J. Biagiotti and J. M. Kenny, “Thermal and mechanical properties of single-walled carbon nanotubes-polypropylene composites prepared by melt processing,” Carbon, Vol. 43, pp. 1499-1505, 2005.
    34. W. Tang, M. H. Santare and S. G. Advani, “Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (MWNT/HDPE) composite films,” Carbon, Vol. 41, pp. 2779-2785, 2003.
    35. H. Zeng, C. Gao, Y. Wang, P. C. P. Watts, H. Kong, X. Cui and D. Yan, “In situ polymerization approach to multiwalled carbon nanotubes-reinforced nylon 1010 composites: Mechanical properties and crystallization behavior,” Polymer, Vol. 47, pp. 113~122, 2006.
    36. K. T. Lau, M. Lu, C. K. Lam, H. Y. Cheung, F. L. Sheng and H. L. Li, “Thermal and mechanical properties of single-walled carbon nanotube boundle-reinforced epoxy nanocomposites: the role of solvent for nanotube dispertion,” Composite Science and Technology, Vol. 65, pp. 719-725, 2005.
    37. F. H. Hojny, M. H. G Wichmann, B. Fiedler, and K. Schulte, “Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites-A comparative study,” Composites Science and technology, Vol. 65, pp. 2300-2313, 2005.
    38. B. K. Zhu , S. H. Xie, Z. K. Xu and Y. Y. Xu, “Preparation and properties of the polyimide/multi-walled carbon nanotubes (MWNTs) nanocomposites,” Composites Science and Technology, Vol. 66, pp. 548~554, 2006.
    39. Y. Breton, G. Desarmot, J. P. Salvetat, S. Delpeux, C. Sinturel, F. Beguin and S. Bonnamy, “Mechanical properties of multiwall carbon nanotubes/epoxy composites: influence of network morphology,” Carbon, Vol. 42, pp. 1027-1030, 2004.
    40. L. Liu, A. H. Barber, S. Nuriel and H. D. Wanger, “Mechanical Properties of Functionalized Single-Walled Carbon-Nanotube/Poly(vinyl alcohol) Nano- composities,” Advanced Functional Materials, Vol. 15, pp. 975-980, 2005.
    41. 王彙中與馬振基,EMI/RFI 遮蔽用導電性高分子複合材料,塑膠資訊,No. 33, pp. 1-14, 1999。
    42. 李煥松,電磁相容性(EMC)測試,電子月刊,第五卷第八期,1996。
    43. 方志行與陳淑貞,淺談電磁干擾,全華科技圖書股份有限公司,2005。
    44. 白瑞芬,析鍍於碳纖維之無電鍍鎳鍍層及其EMI遮蔽材之研究,大同大學材料工程學系碩士論文,1994。
    45. J. P. Mills, “Electro-Magnetic Interference Reduction in Electronic Systems,” Englewood Cliffs, N. J., PTR Prentice Hall, 1993.
    46. C. R. Paul, “Introduction to electromagnetic compatibility,” Wiley series in Microwave and Optical Engineering, pp. 632-648, 1992.
    47. 天笠啟祐,電磁波的夢饜,創意力文化公司,1997。
    48. G. Lu, X. Li and H. Jiang, “Electrical and shielding properties of ABS resin filled with nickel-coated carbon fibers,” Composites Science and Technology, Vol. 56, pp. 193-200, 1996.
    49. J. P. B. Mallick, “Electromagnetic interference shielding by carbon fiber-filled polychloroprene rubber composites,” Composites, Vol. 22, pp. 451-455, 1991.
    50. 莊東漢與林清彬,防電磁波干擾之金屬化塑膠粒暨其射出成型產品,科學發展月刊,第28卷,第6期,2000。
    51. 工商時報科技版,1998年12月8日。
    52. 王崇豪,碳奈米管/聚胺基甲酸酯複合材料製備及其性質研究,國立清華大學化學工程學系碩士論文,2005。
    53. ASTM D4935-99, “Standard Test Method For Measuring The Electromagnetic Shielding Effectiveness of Planar Materials,” Annual Book of ASTM Standards, Vol. 10.2, 1999.
    54. 彭泰豪,單壁奈米碳管/酚醛樹脂複合材料之機電及熱性質研究,國立清華大學碩士論文,2006。
    55. ASTM D257, “Standard Test Method For D-C Resistance or Conductance of Insulating Materials,” Annual Book of ASTM Standards, Vol. 10.2, 1984.
    56. ASTM D638-82a, “Standard Test Method For Tensile Properties of Plastics,” Annual Book of ASTM Standards, Vol. 8.2, 1981.
    57. http://www.ce-mag.com/archive/2000/novdec/esdhelp.html

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE