研究生: |
郭睿心 Kuo, Jui-Hsin |
---|---|
論文名稱: |
應用SVD方法預測保固期內產品退貨率之研究 Applying SVD Method to Predict Field Return Rate within Warranty Period |
指導教授: |
曾勝滄
Tseng, Sheng-Tsaing |
口試委員: |
徐南蓉
Hsu, Nan-Jung 彭健育 Peng, Chien-Yu 鄭順林 Jeng, Shuen-Lin |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 42 |
中文關鍵詞: | 保固期內退貨率之預測 、SVD分解 、實驗樣本數之決定 |
外文關鍵詞: | Predict field return rate within warranty period, SVD method, decide the number of sample size |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
如何推估產品在保固期內的退貨率是廠商需考慮的重要決策問題。文獻上有多位學者針對多個類別且具有 “通過/不通過” 屬性的實驗室測試資料及現場退貨資料,分別探討如何建立參數化 “層狀結構” 模型及 limited failure population (LFP) 模型,並藉由連結函數來預測保固期內退貨率。然而上述參數化模型對實際實驗室測試資料的配適不甚理想,且 LFP 模型對現場資料的配適亦有整體低估現象。為克服此問題,本研究採用無參數化的singular value decomposition (SVD) 方法來克服此困難。具體做法是分別對實驗室測試資料與現場退貨資料進行SVD分解後,再透過適當的連結函數來進行現場退貨率預測分析。此無參數化模型之優點是此方法操作上十分簡便且可避免前述參數化模型的選模及模型配適等問題。唯SVD方法的預測能力與實驗室測試樣本數息息相關,故本研究在退貨率的預測值之總變異控制在給定的臨界值下,亦探討如何決定適當的測試樣本數。最後透過模擬實驗來比較此方法與現存方法之預測績效,整體而言,在測試樣本數足夠大 (大於15以上) 下,本方法之預測績效優於現存方法。
Nowadays, the manufacturers usually provide a warranty policy to attract their potential customers, under which a failed item can be replaced for free during the warranty period. For the purpose of inventory and management, the manufacturers need to estimate the product's field return rate accurately within the warranty period. For this challenging problem, several research works have been proposed in the literature, but these methods are applicable case by case and only for a single product. Recently, for the case with multiple products, an empirical Bayes (EB) parametric model has been proposed. This approach, however, does not have a good prediction performance in practical applications. To handle this problem, this study adopts the singular value decomposition method to construct a prediction model for the field return rate based on data available for multiple products. The proposed method is a semiparametric approach and therefore has the advantage of avoiding the issue of model selection, which is crucial in the EB parametric approach. In addition, the implementation of the proposed methodology is very easy and fast. Finally, we make comparisons on the prediction performance of this method to EB parametric approach via simulations. The results demonstrate that the prediction performance of the proposed methodology outperforms the existing methods.
[1] 林逸樵 (2013). “品質測試資料應用於保固產品之退貨率預測”, 國立清華大學統計學研究所碩士論文。
[2] 邱于暄 (2018). “利用實驗室測試資料來預測產品在保固期內之退貨率”, 國立清華大學研究所碩士論文。
[3] Gilbert, S. (2005). Linear Algebra and Its Applications, Belmont, CA: Thomson, Brooks/Cole.
[4] Agresti, A. (2002). Categorical Data Analysis, 2nd ed., New York: Wiley.
[5] Meeker, W. Q. (1987). “Limited failure population life tests: application to integrated circuit reliability.” Technometrics, 29, 51-65.
[6] Tseng, S. T., Hsu, N. J., and Lin Y. C. (2016). “Joint modeling of laboratory and field data with application to warranty prediction for highly reliable products.” IIE Transactions, 48, 710-719.
[7] Tipping, M. E., and Bishop, C. M. (1999). “Probabilistic principal component analysis.” J. R. Statist. Soc. Series B, 61, 611-622.
[8] Meeker, W. Q., Escobar, L. A. and Hong, Y. (2009). “Using accelerated life tests results to predict product field reliability.” Technometrics, 51, 146–161.
[9] Lawless, J. F., Crowder, M. J. and Lee, K. A. (2009). “Analysis of reliability and warranty claims in products with age and usage scales.” Technometrics, 51, 14-24.
[10] Blischke, W., Karim, M. and Murthy, D. (2011). Warranty Data Collection and Analysis. London: Springer.
[11] Lawless, J. F., Hu, J. and Cao, J. (1995). “Methods for the estimation of failure distributions and rates from automobile warranty data.” Lifetime Data Anal, 1, 227–240.
[12] Ye, Z. S., Hong, Y. and Xie, Y. (2013). “How do heterogeneities in operating environments affect field failure prediction and test planning?” The Annals of Applied Statistics, 7, 2249-2271.
[13] Johnson, R. A. and Wichern, D. W. (2007). Applied Multivariate Statistical Analysis, 6th ed., New Jersey: Prentice Hall.