簡易檢索 / 詳目顯示

研究生: 文塔拉
Tunuguntla, Venkatesh
論文名稱: Non-toxic solution processed earth abundant kesterite based thin-film solar cells and their device engineering
利用無毒溶液製程鋅黃錫礦半導體材料應用於薄膜太陽能電池
指導教授: 陳貴賢
Chen, Kuei Hsien
倪其焜
Ni, Chi-Kung
口試委員: 林麗瓊
Chen, Li-Chyong
黃智賢
Hwang, Jih Shang
呂宗昕
Lu, Chung-Hsin
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 104
語文別: 英文
論文頁數: 109
中文關鍵詞: 1,3-二甲基-2-咪唑啉酮溶膠凝膠法銅鋅錫硫硒太陽能元件緩衝層化學水域沉積法(鋅、硫、氧、氫氧)
外文關鍵詞: Sol-gel,, CZTSSe solar cells,, Buffer layers,, CBD-(Zn,S,O,OH)
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將介紹一製成。使用硫銅錫鋅結構作為吸收層,藉由使用無毒的溶膠凝膠法旋轉塗佈到表面達成,且做成一太陽能元件。

    近年來,銅鋅錫硫(CZTS)或銅鋅錫硫硒(CZTSSe)系列的太陽能電池材料,因由地殼上豐度高的元素所組合而成,未來極有機會取代目前商業上已成功量產的銅銦鎵硫(CIGS)電池,而獲得龐大的關注。

    在第二章,首先介紹旋轉塗佈的材料,此為一墨水,以1,3-二甲基-2-咪唑啉酮(1,3-dimethyl-2-Imadazolidinone)(DIM)作為溶劑,將銅鋅錫硫(以下簡稱CZTS)溶解於此溶劑中。透過旋轉塗佈得到CZTS薄膜。先將CZTS薄膜透過CVD沉積錫(Tin),再者,CZTS薄膜快速熱退火的同時,通入經稀釋的硫化氫(H2S)氣體與6%氮氣(N2)。這樣外部提供的錫(Tin)與硫(S),可以減少退火時錫(Tin)在CZTS薄膜中結構的損失,並以達到強化元件特性之目的。此晶粒狀的CZTS薄膜可達到0.7到1.5微米厚度,且在钼(Mo)與CZTS薄膜之間擁有低碳量與小晶粒層的特性。製造出的元件效率最高可達5.67%,擁有0.58伏的開路電壓(Voc)與每平方公分18.48毫安培的短路電流(Jsc),且有53.14%的填充因子(Fill Factor)。

    在第三章。我們介紹經硒化反應合成的銅鋅錫硫硒(CZTSSe)化合物(以下簡稱CZTSSe)作為吸收層材料,透過改變硫(S)與硒(Se)的比例,達成所要的能隙(Band Gap)。將CZTS薄膜快速熱退火的同時,通入經稀釋的硫化氫(H2S)氣體與10%氬氣(Ar),再者由外部提供錫(Tin)與硒(Se)。我們成功地得到不同能隙的CZTSSe,藉由改變錫(Tin)與硒(Se)的總和(x= 274 mg, x/5, x/10),我們更成功的將CZTSSe的能隙從1.14伏特提高到1.34伏特。此章最後,第一,優化的錫(Tin)與硒(Se)總量為54.8mg, 且CZTSSe最好的能隙坐落於1.22eV,元件效率可達到4.72%,擁有0.48伏的開路電壓(Voc)與22.2每平方公分毫安培的短路電流(Jsc),且有44.3%的填充因子(Fill Factor);第二,熱退火硒化時,在加入硒(Se)碇時僅通入氫氣與稀釋後的氬氣輔助,且觀察完整CZTSe的成長過程,在100sccm的氫氣,效率可達5.19%,擁有0.38伏的開路電壓(Voc)與27.6每平方公分毫安培的短路電流(Jsc),且有49.5%的填充因子(Fill Factor)。

    回顧我們先前研究的CZTS/CZTSSe元件。硫酸鎘(CdSO4),曾被作為鎘(Cd)的提供源,透過CBD(根據穩定的沉積製成)沉積硫化鎘(CdS)薄膜,厚度為80正負20微米厚度。由穩定製成的製作出的元件,其顯示出元件在短波長波段的可見光光譜並沒有很好的電荷收集效率,原因是吸收層中做為緩衝層的CdS。在第四章,CdS層擁有37 微米的厚度沉積在CZTSSe,使用Cd(NO3)2作為前驅物,使用CBD在PH值11.8下製成。加上CdS層所做出完整的元件,效率最高可達到6.97%,相較於5.91%控制元件,因為是異質結界面的優化與對外部電子光譜電荷收集的強化,所以增加了電子密度。

    在第五章,將展示出用溶液製成的CZTS做出p-n接面(CZTS/Zn) (S,O,OH)。一個n-type 鋅Zn(S,O,OH)厚度在40微米的緩衝層,利用13分鐘的CBD沉積在CZTS 上。其薄膜內的化學構成是由能譜儀並尋找硫與氧元素的梯度分布。在CBD之後p-n接面由NH4OH清洗,再由200C加熱10分鐘。由CBD做出的ZnS緩衝層製成的太陽能元件,效率可達4.1%,相較於5.67%標準CdS緩衝層的製成的元件。


    This thesis demonstrates the deposition and growth of earth abundant kesterite (i.e., Cu2ZnSnS4, Cu2ZnSnSxSe4–x) absorber layers by using non-toxic sol-gel spin coating approach and their solar cells device engineering.
    In chapter 2, we have introduced 1,3-dimethyl-2-Imadazolidinone (DMI) as a solvent for the preparation of high viscosity homogeneous nontoxic Cu2ZnSnS4 (CZTS) ink. Annealing the spin coated CZTS thin film in diluted H2S (6% N2) gas with externally supplied tin and sulfur environment suppresses the tin loss from the thin-film surface and enhanced the device performance. Grain size of CZTS has been achieved to > 0.7 to 1.5 µm with no carbon rich or small grain layer at the Mo/CZTS interface. The fabricated champion device achieved 5.67% efficiency with open circuit voltage of 0.58 V, short circuit current density of 18.48 mA/cm2, and a fill factor of 53.14%.
    In chapter 3 – reactive gas selenization – we demonstrate the synthesis of CZTSSe absorber layers with desired bandgap by tuning the composition of S to Se ratio. Annealing the spin coated CZTS thin film in diluted H2S (10% Ar) gas with externally supplied tin and selenium; we successfully have obtained CZTSSe absorber layers of different bandgaps. By changing Sn+Se amount (x= 274 mg, x/5, x/10), we successfully tuned the CZTSSe absorber layers bandgaps from 1.14 to 1.34 eV. Finally, by optimizing the Sn+Se (=54.8 mg) amount, the best CZTSSe (Eg = 1.22 eV) device efficiency was achieved to be 4.72% with Voc = 0.48 V, Jsc = 22.2 mA/cm2 and FF = 44.3 %. In second part, H2+Ar-assisted selenization, when annealed in H2 (diluted in Ar) and Se, we have observed formation of completely grown CZTSe absorber layer. In 100sccm H2, the device efficiency was achieved to 5.19%, Voc = 0.38 V, Jsc = 27.6 mA/cm2, FF=49.5 %. In order to obtain “stable CZTS” solution, we have changed copper source to copper formate to get preferred oxidation Cu2+1Zn+2Sn+4S4-2. H2-assisted selenization of the spin-coated film with such a sol-gel, gave an improved solar cell performance. The champion cell efficiency found to be 5.19%, Voc = 0.38 V, Jsc = 27.6 mA/cm2, FF=49.5 %. Eg = 1.06 eV.
    In our previous studies on CZTS/CZTSSe devices, cadmium sulfate (CdSO4) has been used as the cadmium source for depositing CdS layer (80±20 nm) via CBD (hereafter referred to as standard procedure). Devices fabricated with the standard procedure show poor charge collection at shorter wavelengths of the visible spectrum due to absorption by the CdS buffer layer. In chapter 4, a Cadmium sulfide (CdS) layer with a thickness of 37±5 nm is deposited onto a Cu2ZnSn(SSe)4 absorber layer using Cd(NO3)2 precursor at pH 11.8 via CBD process. Here the absorber is grown by sputtering process. Full devices fabricated with the thin CdS layer show improved champion efficiency of 6.97%, compared with 5.91% control device due to increased current density from optimized hetero-junction interface and enhanced charge collection in the external quantum efficiency spectrum.
    In chapter 5, preparation of solution processed earth abundant p-n junction, Cu2ZnSnS4/Zn(S,O,OH), is presented here. A thin, n-type Zn(S,O,OH) buffer layer of 40±5 nm thickness is chemical bath deposited (CBD) on Cu2ZnSnS4 absorber layer with 13 min deposition time. The chemical composition of the film is determined by energy dispersive spectroscopy and found gradient distribution of S and O across the film. After CBD, the p-n junction is rinsed in NH4OH and subsequently heated at 200 C for 10 min. The solar cell performance of CBD-ZnS buffer layer reached up to 4.1% efficiency compared with 5.67% of standard CdS buffer layer solar cell.

    List of Tables i List of Figures ii List of Abbreviations vi Chapter 1 Introduction 1 1.1 Evolution of poly crystalline thin-film solar cell 2 1.1.1 Chalcopyrite based solar cells 5 1.1.2 Kesterite based solar cells 8 1.2 Current status of CZTS solar cell research 9 1.3 Vacuum based techniques 10 1.3.1 Sputtering 10 1.3.2 Evaporation 10 1.4 Non-vacuum based techniques 11 1.4.1 Electrodeposition 11 1.4.2 Nanoparticle-based approach 12 1.4.3 Sol-gel based approach 12 1.5 Kesterite solar cell structure 14 1.6 Scope of this thesis 18 Chapter 2 Non-toxic sol-gel processed CZTS solar cells 19 2.1 Cu2ZnSnS4 absorber layer 19 2.2 Motivation 20 2.3 Experiment 22 2.4 CZTS device fabrication 22 2.4.1 Molybdenum substrate cleaning 22 2.4.2 Spin-coating the CZTS thin film 23 2.4.3 Annealing profile 23 2.4.4 Cadmium Sulfide Deposition 24 2.4.5 RF sputtered window layer (i-ZnO) deposition 24 2.4.6 DC sputtered Transparent Conducting Oxide layer (ITO) deposition 25 2.4.7 Front contact 25 2.4.8 Device structure: 25 2.5 Characterization 25 2.6 Results and Discussion 26 2.6.1 Thermo Gravimetric Analysis 26 2.6.2 Scanning Electron Microscopy Analysis 27 2.6.3 X-Ray Diffraction and Raman Spectroscopy Analysis 33 2.6.4 Scanning Tunneling Electron Microscopy and Elemental Analysis 34 2.6.5 Device Performance 37 2.7 Summary of the chapter 40 Chapter 3 Band gap tuning of CZTSSe absorber layer by reactive gas annealing 41 3.1 Band gap tuning of CZTSSe absorber layer 41 3.2 CZTSSe device fabrication 44 3.2.1 Materials 44 3.2.2 Preparation of CZTS precursor solutions by sol-gel method 44 3.2.3 Spin-coating of CZTS thin film 44 3.3 H2S assisted annealing for CZTSSe absorber layer 45 3.3.1 Synthesis of CZTSSe thin-films 45 3.3.2 CZTSSe device fabrication 47 3.4 Results and discussion 47 3.4.1 X-ray Diffraction 48 3.4.2 Raman scattering spectroscopy 50 3.4.3 Scanning electron microscopy (SEM) 51 3.4.4 J-V characteristics of CZTSSe solar cells 52 3.5 H2 assisted annealing for CZTSe absorber layer 55 3.5.1 Synthesis of CZTSe thin-films 56 3.5.2 Morphological studies of CZTSe thin film by SEM 56 3.5.3 XRD and Raman studies for CZTSe thin film 59 3.5.4 J-V characteristics 62 3.6 Summary of the chapter 63 Chapter 4 Alternative CdS depsoition for enhanced charge ollection 65 4.1 Role of a buffer layer 65 4.2 Defect passivation by CBD method 66 4.3 Cadmium sulfide buffer layer in kesterite solar cells 67 4.4 Experiment 70 4.5 Device fabrication and structure 71 4.6 Results and Discussion 71 4.6.1 Morphology and thickness studies on ITO substrate 71 4.6.2 p-n junction formation by standard and new procedure 73 4.6.3 Current density-voltage (J-V) curve 74 4.6.4 External quantum efficiency & band gap 77 4.7 Summary of the chapter 78 Chapter 5 Zn(S,O,OH) as an alternative buffer layer for CZTS soalr cell 80 5.1 Conventional V.S Alternative buffer layers and their preparation methods 81 5.2 Zn(S,O,OH) film growth and mechanism of by CBD process 84 5.2.1 The ion-by-ion mechanism 84 5.2.2 The cluster (hydroxide) mechanism 85 5.2.3 Strategy to grow improved quality of CBD-ZnS film 87 5.3 Experiment 88 5.3.1 Chemical bath deposition of Zn(S,O,OH) 88 5.4 CZTS device fabrication 89 5.4.1 Atomic layer deposition of i-ZnO 89 5.4.2 Device structure 90 5.5 Results and discussion 90 5.5.1 X-Ray Photoelectron Spectroscopy 91 5.6 Device performance of CBD-ZnS as a buffer layer 92 5.6.1 Sputtering v.s. Atomic layer deposition of i-ZnO 92 5.6.2 Device performance and i-ZnO thickness optimization by ALD 93 5.6.3 Ammonia rinsing of p-n junction after CBD 95 5.6.4 Device performance ALD grown i-ZnO after ammonia rinsing 96 5.6.5 Scanning Tunneling Electron Microscopy and Elemental Analysis 98 5.7 Summary of the chapter 101 Chapter 6 Conclusion 102 6.1 Synthesis of CZTS polycrystalline thin film 102 6.2 Synthesis and band gap tuning of CZTSSe polycrystalline thin film 102 6.3 Synthesis of CZTSe polycrystalline thin film 103 6.4 Device performance of CZT(SxSe(1-x)), 0≤x≤1 103 6.5 Reduced CdS buffer layer thickness 103 6.6 Formation of earth abundant p-n junction 104 Reference 105

    [1] N. S. Lewis, D. G. Nocera, Proceedings of the National Academy of Sciences of the United States of America 2006, 103, 15729.
    [2] O. Morton, Nature 2006, 443, 19.
    [3] M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, E. Maruyama, Photovoltaics, IEEE Journal of 2014, 4, 96.
    [4] S. E. Habas, H. A. S. Platt, M. F. A. M. van Hest, D. S. Ginley, Chemical Reviews 2010, 110, 6571.
    [5] C. Wadia, A. P. Alivisatos, D. M. Kammen, Environmental Science & Technology 2009, 43, 2072.
    [6] S. G. Kumar, K. S. R. K. Rao, Energy Environ. Sci. 2014, 7, 45.
    [7] L. L. Kazmerski, M. S. Ayyagari, F. R. White, G. A. Sanborn, Journal of Vacuum Science & Technology 1976, 13, 139.
    [8] S.-H. Chang, M.-Y. Chiang, C.-C. Chiang, F.-W. Yuan, C.-Y. Chen, B.-C. Chiu, T.-L. Kao, C.-H. Lai, H.-Y. Tuan, Energ Environ Sci 2011, 4, 4929.
    [9] D. H. Jara, S. J. Yoon, K. G. Stamplecoskie, P. V. Kamat, Chem Mater 2014, 26, 7221.
    [10] S. Jeong, B.-S. Lee, S. Ahn, K. Yoon, Y.-H. Seo, Y. Choi, B.-H. Ryu, Energ Environ Sci 2012, 5, 7539.
    [11] William Shockley, H. J. Queisser, J Appl Phys 1961, 32, 510.
    [12] K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, A. Duda, Progress in Photovoltaics: Research and Applications 2003, 11, 225.
    [13] P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. M. Friedlmeier, M. Powalla, physica status solidi (RRL) – Rapid Research Letters 2015, 9, 28.
    [14] B. A. Andersson, PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS 2000, 8, 17.
    [15] M. Graetzel, R. A. Janssen, D. B. Mitzi, E. H. Sargent, Nature 2012, 488, 304.
    [16] T. Gokmen, O. Gunawan, T. K. Todorov, D. B. Mitzi, Appl Phys Lett 2013, 103, 103506.
    [17] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS 2013, 21, 11.
    [18] S. Ahmed, K. B. Reuter, O. Gunawan, L. Guo, L. T. Romankiw, H. Deligianni, Adv Energy Mater 2012, 2, 253.
    [19] I. Kentaro, N. Tatsuo, Jpn J Appl Phys 1988, 27, 2094.
    [20] P. A. Fernandes, P. M. P. Salom, A. F. d. Cunha, Semicond Sci Tech 2009, 24, 105013.
    [21] T. Tanaka, T. Nagatomo, D. Kawasaki, M. Nishio, Q. Guo, A. Wakahara, A. Yoshida, H. Ogawa, J Phys Chem Solids 2005, 66, 1978.
    [22] K. Hironori, J. Kazuo, Y. Satoru, K. Tsuyoshi, M. Win Shwe, F. Tatsuo, I. Tadashi, M. Tomoyoshi, Appl Phys Express 2008, 1, 041201.
    [23] H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, T. Yokota, Sol Energ Mat Sol C 1997, 49, 407.
    [24] H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, S. Miyajima, Sol Energ Mat Sol C 2001, 65, 141.
    [25] K. Wang, O. Gunawan, T. Todorov, B. Shin, S. J. Chey, N. A. Bojarczuk, D. Mitzi, S. Guha, Appl Phys Lett 2010, 97, 143508.
    [26] B. Shin, Y. Zhu, N. A. Bojarczuk, S. Jay Chey, S. Guha, Appl Phys Lett 2012, 101, 053903.
    [27] J. J. Scragg, P. J. Dale, L. M. Peter, G. Zoppi, I. Forbes, physica status solidi (b) 2008, 245, 1772.
    [28] J. J. Scragg, D. M. Berg, P. J. Dale, J Electroanal Chem 2010, 646, 52.
    [29] L. Guo, Y. Zhu, O. Gunawan, T. Gokmen, V. R. Deline, S. Ahmed, L. T. Romankiw, H. Deligianni, Progress in Photovoltaics: Research and Applications 2014, 22, 58.
    [30] A. Ennaoui, M. Lux-Steiner, A. Weber, D. Abou-Ras, I. Kötschau, H. W. Schock, R. Schurr, A. Hölzing, S. Jost, R. Hock, T. Voß, J. Schulze, A. Kirbs, Thin Solid Films 2009, 517, 2511.
    [31] Q. Guo, H. W. Hillhouse, R. Agrawal, J Am Chem Soc 2009, 131, 11672.
    [32] Q. Guo, G. M. Ford, W.-C. Yang, B. C. Walker, E. A. Stach, H. W. Hillhouse, R. Agrawal, J Am Chem Soc 2010, 132, 17384.
    [33] K. Woo, Y. Kim, J. Moon, Energ Environ Sci 2012, 5, 5340.
    [34] K. Woo, Y. Kim, W. Yang, K. Kim, I. Kim, Y. Oh, J. Y. Kim, J. Moon, Sci Rep 2013, 3, 3069.
    [35] J. W. Cho, A. Ismail, S. J. Park, W. Kim, S. Yoon, B. K. Min, ACS Appl Mater Interfaces 2013, 5, 4162.
    [36] T. K. Todorov, K. B. Reuter, D. B. Mitzi, Adv Mater 2010, 22, E156.
    [37] W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, D. B. Mitzi, Adv Energy Mater 2014, DOI: 10.1002/aenm.201301465.
    [38] M. Johnson, S. V. Baryshev, E. Thimsen, M. Manno, X. Zhang, I. V. Veryovkin, C. Leighton, E. S. Aydil, Energy Environ. Sci. 2014, 7, 1931.
    [39] D. Abou-Ras, G. Kostorz, D. Bremaud, M. Kälin, F. V. Kurdesau, A. N. Tiwari, M. Döbeli, Thin Solid Films 2005, 480–481, 433.
    [40] O. Gunawan, T. K. Todorov, D. B. Mitzi, Appl Phys Lett 2010, 97, 233506.
    [41] S. Ishizuka, K. Sakurai, A. Yamada, K. Matsubara, P. Fons, K. Iwata, S. Nakamura, Y. Kimura, T. Baba, H. Nakanishi, T. Kojima, S. Niki, Sol Energ Mat Sol C 2005, 87, 541.
    [42] M. A. Contreras, J. Tuttle, A. Gabor, A. Tennant, K. Ramanathan, S. Asher, A. Franz, J. Keane, L. Wang, R. Noufi, Sol Energ Mat Sol C 1996, 41–42, 231.
    [43] X. Lu, Z. Zhuang, Q. Peng, Y. Li, Chem Commun (Camb) 2011, 47, 3141.
    [44] S. Chen, X. G. Gong, A. Walsh, S.-H. Wei, Appl Phys Lett 2009, 94, 041903.
    [45] H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, T. Yokota, Sol Energ Mat Sol C 1997, 49, 407.
    [46] B. Shin, O. Gunawan, Y. Zhu, N. A. Bojarczuk, S. J. Chey, S. Guha, Progress in Photovoltaics: Research and Applications 2013, 21, 72.
    [47] A. Nagoya, R. Asahi, R. Wahl, G. Kresse, Phys Rev B 2010, 81, 113202.
    [48] W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, D. B. Mitzi, Adv Energy Mater 2014, 4, 1301465.
    [49] J. Kim, H. Hiroi, T. K. Todorov, O. Gunawan, M. Kuwahara, T. Gokmen, D. Nair, M. Hopstaken, B. Shin, Y. S. Lee, W. Wang, H. Sugimoto, D. B. Mitzi, Adv Mater 2014, 26, 7427.
    [50] K. Tanaka, N. Moritake, H. Uchiki, Sol Energ Mat Sol C 2007, 91, 1199.
    [51] W. Yang, H. S. Duan, B. Bob, H. Zhou, B. Lei, C. H. Chung, S. H. Li, W. W. Hou, Y. Yang, Adv Mater 2012, 24, 6323.
    [52] C. M. Fella, A. R. Uhl, Y. E. Romanyuk, A. N. Tiwari, physica status solidi (a) 2012, 209, 1043; G. M. Ilari, C. M. Fella, C. Ziegler, A. R. Uhl, Y. E. Romanyuk, A. N. Tiwari, Sol Energ Mat Sol C 2012, 104, 125.
    [53] G. Wang, W. Zhao, Y. Cui, Q. Tian, S. Gao, L. Huang, D. Pan, ACS Appl Mater Interfaces 2013, 5, 10042.
    [54] V. Tunuguntla, W. C. Chen, P. H. Shih, I. Shown, Y. R. Lin, J. S. Hwang, C. H. Lee, L. C. Chen, K. H. Chen, J Mater Chem A 2015, 3, 15324.
    [55] Miguel A.Contreras, Manuel J.Romero, Bobby To, F.Hasoon, R.Noufi, S.Ward, a. K.Ramanathan, Thin Solid Films 2002, 403, 8.
    [56] Z. Su, K. Sun, Z. Han, H. Cui, F. Liu, Y. Lai, J. Li, X. Hao, Y. Liu, M. A. Green, J Mater Chem A 2014, 2, 500; T. K. Chaudhuri, D. Tiwari, Sol Energ Mat Sol C 2012, 101, 46.
    [57] J. B. Li, V. Chawla, B. M. Clemens, Adv Mater 2012, 24, 720.
    [58] K. Maeda, K. Tanaka, Y. Nakano, Y. Fukui, H. Uchiki, Jpn J Appl Phys 2011, 50, 05FB09; K. Maeda, K. Tanaka, Y. Fukui, H. Uchiki, Sol Energ Mat Sol C 2011, 95, 2855.
    [59] J. J. Scragg, J. T. Watjen, M. Edoff, T. Ericson, T. Kubart, C. Platzer-Bjorkman, J Am Chem Soc 2012, 134, 19330.
    [60] J. J.Scragg, Copper Zinc Tin Sulfide Thin films for Photovoltaics, Springer Science & Business Media, 2011; J. J. Scragg, T. Ericson, X. Fontané, V. Izquierdo-Roca, A. Pérez-Rodríguez, T. Kubart, M. Edoff, C. Platzer-Björkman, Progress in Photovoltaics: Research and Applications 2014, 22, 10.
    [61] J. van Embden, A. S. Chesman, E. Della Gaspera, N. W. Duffy, S. E. Watkins, J. J. Jasieniak, J Am Chem Soc 2014, 136, 5237.
    [62] Y. Cao, M. S. Denny, Jr., J. V. Caspar, W. E. Farneth, Q. Guo, A. S. Ionkin, L. K. Johnson, M. Lu, I. Malajovich, D. Radu, H. D. Rosenfeld, K. R. Choudhury, W. Wu, J Am Chem Soc 2012, 134, 15644.
    [63] A. Weber, R. Mainz, H. W. Schock, J Appl Phys 2010, 107, 013516.
    [64] J. J. Scragg, T. Ericson, T. Kubart, M. Edoff, C. Platzer-Bjorkman, Chem Mater 2011, 23, 4625.
    [65] A. Redinger, D. M. Berg, P. J. Dale, S. Siebentritt, J Am Chem Soc 2011, 133, 3320.
    [66] D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov, D. B. Mitzi, Progress in Photovoltaics: Research and Applications 2012, 20, 6.
    [67] K. Wang, O. Gunawan, T. Todorov, B. Shin, S. J. Chey, N. A. Bojarczuk, D. Mitzi, S. Guha, Appl Phys Lett 2010, 97, 143508.
    [68] K. Wang, B. Shin, K. B. Reuter, T. Todorov, D. B. Mitzi, S. Guha, Appl Phys Lett 2011, 98, 051912.
    [69] M. T. Winkler, W. Wang, O. Gunawan, H. J. Hovel, T. K. Todorov, D. B. Mitzi, Energ Environ Sci 2014, 7, 1029.
    [70] S. Chen, X. G. Gong, S.-H. Wei, Phys Rev B 2007, 75, 205209.
    [71] S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, D. B. Mitzi, Chem Mater 2012, 24, 4588; C.-H. Chung, B. Bob, B. Lei, S.-H. Li, W. W. Hou, Y. Yang, Sol Energ Mat Sol C 2013, 113, 148.
    [72] H. Wei, Z. Ye, M. Li, Y. Su, Z. Yang, Y. Zhang, Crystengcomm 2011, 13, 2222.
    [73] S. C. Riha, B. A. Parkinson, A. L. Prieto, J Am Chem Soc 2011, 133, 15272.
    [74] S. W. Shin, I. Y. Kim, K. V. Gurav, C. H. Jeong, J. H. Yun, P. S. Patil, J. Y. Lee, J. H. Kim, Curr Appl Phys 2013, 13, 1837; S. W. Shin, J. H. Han, Y. C. Park, G. L. Agawane, C. H. Jeong, J. H. Yun, A. V. Moholkar, J. Y. Lee, J. H. Kim, J Mater Chem 2012, 22, 21727.
    [75] S. M. Pawar, A. I. Inamdar, K. V. Gurav, S. W. Shin, J. Gwak, Y. Jo, J. Yun, H. Pak, S. Kwon, H. Kim, J. H. Kim, H. Im, Curr Appl Phys 2015, 15, 59.
    [76] J. J. Scragg, T. Ericson, X. Fontané, V. Izquierdo-Roca, A. Pérez-Rodríguez, T. Kubart, M. Edoff, C. Platzer-Björkman, Progress in Photovoltaics: Research and Applications 2014, 22, 10.
    [77] M. Himmrich, H. Haeuseler, Spectrochimica Acta Part A: Molecular Spectroscopy 1991, 47, 933.
    [78] S. Schorr, Sol Energ Mat Sol C 2011, 95, 1482.
    [79] D. Papadimitriou, N. Esser, C. Xue, physica status solidi (b) 2005, 242, 2633.
    [80] S. W. Shin, S. M. Pawar, C. Y. Park, J. H. Yun, J.-H. Moon, J. H. Kim, J. Y. Lee, Sol Energ Mat Sol C 2011, 95, 3202.
    [81] T. Gürel, C. Sevik, T. Çağın, Phys Rev B 2011, 84, 205201.
    [82] N. Noboru, T. Tsuyoshi, I. Masao, N. Masato, Y. Kazuhiro, T. Shinya, N. Shoichi, O. Michitoshi, K. Yukinori, Jpn J Appl Phys 1989, 28, 1762.
    [83] T.-T. Wu, F. Hu, J.-H. Huang, C.-h. Chang, C.-c. Lai, Y.-T. Yen, H.-Y. Huang, H.-F. Hong, Z. M. Wang, C.-H. Shen, J.-M. Shieh, Y.-L. Chueh, Acs Appl Mater Inter 2014, 6, 4842.
    [84] J. Becker, K. Rademann, F. Hensel, Z Phys D - Atoms, Molecules and Clusters 1991, 19, 229.
    [85] D. Xia, Y. Zheng, P. Lei, X. Zhao, Physics Procedia 2013, 48, 228.
    [86] K. A. JONES, J Cryst Growth 1979, 47, 10.
    [87] J.-H. Lee, Thin Solid Films 2007, 515, 6089.
    [88] U. Rau, H. W. Schock, Applied Physics A 1999, 69, 17.
    [89] H. W. S. U. Rau, Appl. Phys. A 1999, 69, 131.
    [90] D. Hariskos, S. Spiering, M. Powalla, Thin Solid Films 2005, 480–481, 99.
    [91] D. Abou-Ras, G. Kostorz, A. Romeo, D. Rudmann, A. N. Tiwari, Thin Solid Films 2005, 480–481, 118.
    [92] Sheng S. Li, B. J. Stanbery, C. H. Huang, C. H. Chang, Y. S. Chang, a. T. J. Anderson, 25th PVSC IEEE 1996, 4.
    [93] M. E. Ozsan, D. R. Johnson, M. Sadeghi, D. Sivapathasundaram, L. M. Peter, M. J. Furlong, G. Goodlet, A. Shingleton, D. Lincot, B. Mokili, J. Vedel, "Optical and electrical characterization of chemically deposited cadmium sulfide thin films", presented at Photovoltaic Energy Conversion, 1994., Conference Record of the Twenty Fourth. IEEE Photovoltaic Specialists Conference - 1994, 1994 IEEE First World Conference on, 5-9 Dec 1994, 1994.
    [94] Dieter Schmid, Martin Ruckh, H. W. Schoc, Sol Energ Mat Sol C 1996, 41/42 14; R. Haight, A. Barkhouse, O. Gunawan, B. Shin, M. Copel, M. Hopstaken, D. B. Mitzi, Appl Phys Lett 2011, 98, 253502.
    [95] M. T. Winkler, W. Wang, O. Gunawan, H. J. Hovel, T. K. Todorov, D. B. Mitzi, Energy Environ. Sci. 2014, 7, 1029.
    [96] K. Ben Messaoud, M. Buffière, G. Brammertz, H. ElAnzeery, S. Oueslati, J. Hamon, B. J. Kniknie, M. Meuris, M. Amlouk, J. Poortmans, Progress in Photovoltaics: Research and Applications 2015, 13.
    [97] J. Tao, K. Zhang, C. Zhang, L. Chen, H. Cao, J. Liu, J. Jiang, L. Sun, P. Yang, J. Chu, Chem Commun 2015, 51, 10337.
    [98] I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W.-C. Hsu, A. Goodrich, R. Noufi, Sol Energ Mat Sol C 2012, 101, 154.
    [99] P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. M. Friedlmeier, M. Powalla, physica status solidi (RRL) - Rapid Research Letters 2015, 9, 28.
    [100] C. Persson, C. Platzer-Björkman, J. Malmström, T. Törndahl, M. Edoff, Physical Review Letters 2006, 97.
    [101] T. Minemoto, A. Okamoto, H. Takakura, Thin Solid Films 2011, 519, 7568.
    [102] D. Hariskos, R. Menner, P. Jackson, S. Paetel, W. Witte, W. Wischmann, M. Powalla, L. Bürkert, T. Kolb, M. Oertel, B. Dimmler, B. Fuchs, Progress in Photovoltaics: Research and Applications 2012, 20, 534.
    [103] T. Ericson, J. J. Scragg, A. Hultqvist, J. TimoWatjen, P. Szaniawski, T. Torndahl, C. Platzer-Bjorkman, IEEE JOURNAL OF PHOTOVOLTAICS 2014, 4, 5.
    [104] Q. Tian, X. Xu, L. Han, M. Tang, R. Zou, Z. Chen, M. Yu, J. Yang, J. Hu, CrystEngComm 2012, 14, 3847.
    [105] R. N. Bhattacharya, M. A. Contreras, G. Teeter, Japanese Journal of Applied Physics 2004, 43, L1475.
    [106] T. K. Tokio Nakada, Toyokazu Kumazawa, and Hiroshi Yamaguchi, IEEE JOURNAL OF PHOTOVOLTAICS 2013, 3, 06.
    [107] W. Witte, S. Spiering, D. Hariskos, Vakuum in Forschung und Praxis 2014, 26, 23.
    [108] N. Naghavi, D. Abou-Ras, N. Allsop, N. Barreau, S. Bücheler, A. Ennaoui, C. H. Fischer, C. Guillen, D. Hariskos, J. Herrero, R. Klenk, K. Kushiya, D. Lincot, R. Menner, T. Nakada, C. Platzer-Björkman, S. Spiering, A. N. Tiwari, T. Törndahl, Progress in Photovoltaics: Research and Applications 2010, 18, 411.
    [109] C. Hubert, N. Naghavi, A. Etcheberry, O. Roussel, D. Hariskos, M. Powalla, O. Kerrec, D. Lincot, physica status solidi (a) 2008, 205, 2335; D. Hariskos, B. Fuchs, R. Menner, N. Naghavi, C. Hubert, D. Lincot, M. Powalla, Progress in Photovoltaics: Research and Applications 2009, 17, 479.
    [110] T. Nakada, M. Mizutani, "Improved efficiency of Cu(In,Ga)Se2 thin film solar cells with chemically deposited ZnS buffer layers by air-annealing-formation of homojunction by solid phase diffusion", presented at Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth IEEE, 2000, DOI: 10.1109/PVSC.2000.915889.
    [111] T. Nakada, T. Kobayashi, T. Kumazawa, H. Yamaguchi, Photovoltaics, IEEE Journal of 2013, 3, 461.
    [112] D. H. Shin, S. T. Kim, J. H. Kim, H. J. Kang, B. T. Ahn, H. Kwon, Acs Appl Mater Inter 2013, 5, 12921; T.-M. Hsieh, S. J. Lue, J. Ao, Y. Sun, W.-S. Feng, L.-B. Chang, J Power Sources 2014, 246, 443.
    [113] A. Ennaoui, M. Bär, J. Klaer, T. Kropp, R. Sáez-Araoz, M. C. Lux-Steiner, Progress in Photovoltaics: Research and Applications 2006, 14, 499; M. Bär, A. Ennaoui, J. Klaer, R. Sáez-Araoz, T. Kropp, L. Weinhardt, C. Heske, H. W. Schock, C. H. Fischer, M. C. Lux-Steiner, Chemical Physics Letters 2006, 433, 71; H. K. Norio Terada, Shinpei Teshima, Tetsuji Okuda, Kozo Obara,Takeshi Yagioka and Tokio Nakada, in Technical Digest of the International PVSEC-17, 2007; M. Bär, A. Ennaoui, J. Klaer, T. Kropp, R. Sáez-Araoz, N. Allsop, I. Lauermann, H. W. Schock, M. C. Lux-Steiner, Journal of Applied Physics 2006, 99, 123503.
    [114] A. Walsh, S. Chen, S.-H. Wei, X.-G. Gong, Adv Energy Mater 2012, 2, 400.
    [115] W.-J. Yin, Y. Wu, S.-H. Wei, R. Noufi, M. M. Al-Jassim, Y. Yan, Adv Energy Mater 2014, 4, DOI:10.1002/aenm.201300712 .

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE