簡易檢索 / 詳目顯示

研究生: 張哲明
Che-Ming Chang
論文名稱: 應用於冷凍設備無位置感測永磁同步馬達驅動系統之開發
Development of a position sensorless permanent-magnet synchronous motor drive for freezer applications
指導教授: 廖聰明
Chang-Ming Liaw
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 142
中文關鍵詞: 永磁同步馬達無感測控制功率因素校正
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研發應用於冷凍冷藏設備之無位置感測永磁同步馬達驅動系統,並從事其控制研究。首先,建構一以數位信號處理器為主之標準永磁同步馬達驅動系統,具必要之感測裝置及控制機構,其變頻器係以市售智慧型功率模組組立,並妥善設計供給各子系統所需之輔助電源。接著建立一單相前端切換式整流器,在具有優良交流入電電力品質下,建立良好調控與可升壓特性之直流鏈電壓。為了更增進切換式整流器之效能,提出一強健控制遲滯帶電流控制脈寬調變機構,大幅改善電流在交流週期零交越點處之波形追控特性。此外,進一步開發隨機切換策略,應用於傳統遲滯帶與正弦遲滯帶之電流控制脈寬調變機構,以得較均勻分佈之電流諧波頻譜。
    其次開發一以內部模型模式追蹤控制器為主之永磁同步馬達反電動勢估測機構,以估測之反電動勢從事永磁同步馬達之無感測向量控制。馬達先以同步機模式啟動,當達到足夠速度,即依估測反電動勢之相角為參考從事永磁同步馬達換相向量控制。經適當之操作模式安排,所建馬達驅動系統可穩定操作,並具有良好操控性能。
    最後,本文從事所建無感測永磁同步馬達驅動系統於冷凍冷藏壓縮機之驅動應用研究,並以一些實測結果評估其驅動效能。為增進冷凍冷藏設備在高速下之驅控效能,本文亦從事直流鏈電壓提升與換相前移控制策略之有效性探究。在控制實現方面,所組立系統之前級切換式整流器與後級馬達驅動系統之數位控制法則皆在一共通數位信號處理器中實現,以利於總體驅動系統之小型化。


    This thesis presents the development and control of a position sensorless permanent-magnet synchronous motor (PMSM) drive for freezer applications. First, a digital signal processor (DSP) based PMSM drive with necessary sensing devices and control schemes is designed and implemented. The off-the-shelf intelligent power module is employed to construct the inverter, and the auxiliary power supplies for the constituted subsystems are properly designed. Secondly, a single-phase front-end switch mode rectifier is established to provide the well-regulated and/or boostable DC-link voltage for the motor drive with good line drawn power quality. To further enhance the operating performance of the SMR, a robust hysteresis current-controlled pulse width modulation (HCC-PWM) scheme is proposed to yield closer current waveform tracking around zero-crossing points of AC cycles. Moreover, the random switching methods for classical fixed-band and sinusoidal-band HCC-PWM schemes are developed to yield more uniformly distributed current harmonic spectrum.
    Thirdly, an internal model following controller based PMSM back electromotive force (EMF) estimator is devised for performing the sensorless vector control of PMSM. As the motor is started in synchronous motor mode and reaches a sufficient speed, the estimated and suitably compensated back-EMF is utilized for making the PMSM vector control. Through proper mode operation arrangement, very stable operation and good driving performance are obtained.
    Finally, the application of the developed sensorless PMSM drive in freezer compressor driving is studied with some experimental results being provided to evaluate its driving performance. To enhance the performance in high-speed of a freezer, the voltage boosting and commutation advanced shift control strategies and their effectiveness are also explored. In the realization of control schemes, all the developed control algorithms of SMR and motor drive are implemented in a command DSP to facilitate the miniaturization of whole motor drive system.

    致謝…………………………………………………………………... i 摘要…………………………………………………………………... ii 英文摘要……………………………………………………………... iii 目錄…………………………………………………………………... iv 圖目錄………………………………………………………………... vi 表目錄………………………………………………………………... xvi 第一章、簡介……………………………………………………….. 1 第二章、永磁同步馬達及直流無刷馬達…………………………... 7 2.1 簡介…………………………………………………… 7 2.2 永磁式同步馬達之定轉子結構特徵………………... 7 2.3 永磁同步馬達之向量控制…………………………… 11 2.4 弦波永磁同步馬達之主導方程式………………….. 13 2.5 PMSM之等效電路參數估測……………………. 19 2.6 所採永磁同步馬達之關鍵參數量測……………….. 23 第三章、DSP數位控制標準弦波永磁同步馬達驅動系統之建構 27 3.1 簡介…………………………………………………… 27 3.2 數位控制器實務……………………………………… 27 3.3 以DSP為主之標準PMSM驅動系統…………..….. 29 3.4 所建PMSM驅動系統之操控特性測試評估... …… 36 第四章、參考模式應電勢估測之無位置感測弦波永磁同步馬達 驅動系統…………………………………………………... 57 4.1 簡介…………………………………………………… 57 4.2 參考模式應電勢估測之無位置感測弦波控制策略 57 4.3 所提無感測控制架構於測試用永磁同步馬達之特 性評估………………………………………………… 59 4.4 所提無感測控制於PMSM驅動壓縮機之操控特性 評估………………………………………………… 76 4.5所提無感測控制架構於冷凍櫃壓縮機驅動性能實測 評估………………………………………………… 79 第五章、具可變遲滯電流控制前端切換式整流器之無位置感測 永磁同步馬達驅控系統…………………………………... 84 5.1簡介…………………………………………………… 84 5.2具遲滯電流控制PWM之升壓型切換式整流器. …… 84 5.3升壓型SMR之電路元件設計……………………… 86 5.4可能之遲滯電流控制PWM………………………… 89 5.5電壓迴授控制器之設計…………………………….. 104 5.6具前端SMR之無位置感測永磁同步馬達驅動系統 107 第六章、結論………………………………………………………... 132 參考資料…………………………………………………………… 133

    A. AC motors, PMSMs and their applications in home applications
    [1] P. C. Sen, Principle of Electric Machines and Power Electronics, 2nd ed. Canada: John Wiley & Sons, Inc., 1997.
    [2] P. C. Krause, O. Wasynczuk and S. D. Sudhoff, Analysis of Electric Machine and Drive System. New York: The Institute of Electrical and Electronics Engineers, Inc., 1995.
    [3] B. K. Bose, Modern Power Electronics and AC Drives. New Jersey: Prentice Hall, Inc., 2002.
    [4] D. C. Hanselman, Brushless Permanent-Magnet Motor Design. New York: McGraw, Inc., 1994.
    [5] R. Krishnan, Electric Motor Drives: Modeling, Analysis and Control. New Jersey: Prentice Hall, Inc., 2001.
    [6] S. Morimoto, “Trend of permanent magnet synchronous machines,” IEEJ Trans. Electrical Elctron. Engineering, vol. 2, no. 2, pp. 101-108, 2007.
    [7] Y. Honda and Y. Takeda, “Technical evolution of permanent magnet synchronous motors for home appliances,” IEEJ Trans. Electrical Elctron. Engineering, vol. 2, no. 2, pp. 118-124, 2007.
    [8] S. A. Tassou and T. Q. Qureshi, “Performance of a variable-speed inverter motor drive for refrigeration applications,” IET Trans. Computing & Control Engineering, vol. 5, no. 4, pp. 193-199, 1994.
    [9] H. Murakami, Y. Honda, H. Kiriyama, S. Morimoto and Y. Takeda, “The performance comparison of SPMSM, IPMSM and SynRM in use as air-conditioning compressor,” Conf. Rec. IEEE IAS, vol. 2, pp. 840-845, 1999.
    [10] A. M. Jungreis and A. W. Kelley, “Adjustable speed drive for residential applications,” IEEE Trans. Ind. Appl., vol. 31, no. 6, pp. 1315-1322, 1995.
    [11] T. A. Kattakayam and K. Srinivasan, “Robust controller for an autonomous small refrigeration unit,” in IEE Proc. Sci., Measurement and Technology, vol. 146, no. 3, pp. 159-163, 1999.
    [12] T. Tanaka, “Environment friendly revolution in home appliances,” in Proc. ISPSD, 2001, pp. 91-95.
    [13] M. Yabe, K. Sakanobe and M. Kawakubo, “High efficient motor drive technology for refrigerator,” in Proc. Environmentally Conscious Design and Inverse Manufacturing, pp. 708-709, 2005.

    B. Analysis, design and modeling of PMSMs
    [14] S. Kawano, H. Murakami and N. Nishiyama, “High performance design of an interior permanent magnet synchronous motor for electric vehicles,” in Proc. PCC-Nagoka, 1997, pp. 33-36.
    [15] P. Pillay and R. Krishnan, “Modeling, simulation and analysis of permanent magnet motor drives, part I: the permanent-magnet synchronous motor drive,” IEEE Trans. Ind. Appl., vol. 25, no. 2, pp. 265-273, 1989.
    [16] P. Pillay and R. Krishnan, “Modeling, simulation, and analysis of permanent-magnet motor drives, part II: the brushless DC motor drive,” IEEE Trans. Ind. Appl., vol. 25, no. 2, pp. 274-279, 1989.
    [17] G. H. Kang, J. P. Hong, G. T. Kim and J. W. Park, “Improved parameter modeling of interior permanent magnet synchronous motor based on finite element analysis,” IEEE Trans. Magn., vol. 36, no. 4, pp. 1867-1870, 2000.
    [18] S. Weisgerber, A. Proca and A. Keyhani, “Estimation of permanent magnet motor parameters,” in Proc. IEEE IAS, 1997, vol. 1, no. 1, pp. 29-34.
    [19] F. F. Bernal, A. G. Cerrada and R. Faure, “Determination of parameters in interior permanent-magnet synchronous motors with iron losses without torque measurement,” IEEE Trans. Ind. Appl., vol. 37, no. 5, pp. 1265-1272, 2001.
    [20] N. Urasaki, T. Senjyu and K. Uezato, “A novel calculation method for iron loss resistance suitable in modeling permanent-magnet synchronous motors,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 41-47, 2003.
    [21] E. C. Lovelace, T. M. Jahns and J. H. Lang, “A saturating lumped-parameter model for an interior PM synchronous machine,” IEEE Trans. Ind. Appl., vol. 38, no. 3, pp. 645-650, 2002.
    [22] M. Kondo, “Parameter measurements for permanent magnet synchronous machines,” IEEJ Trans. Elect. Electron. Eng., vol. 2, no. 2, pp. 109-117, 2007.

    C. Switching control methods, current and speed controls
    [23] J. Holtz, “Pulsewidth modulation- a survey,” IEEE Trans. Ind. Electron., vol. 39, no. 5, pp. 410-420, 1992.
    [24] K. Taniguchi and A. Okumura, “A PAM inverter system for vector control of induction motor,” in Proc. IEEE PCCON, 1993, pp. 478-483.
    [25] F. D. Kieferndorf, M. Forster and T. A. Lipo, “Reduction of DC bus capacitor ripple current with PAM/PWM converter,” IEEE Trans. Ind. Appl., vol. 40, no. 2, pp. 607-614, 2004.
    [26] A. M. Hava, R. J. Kerkman, and T. A. Lipo, “Carrier-based PWM-VSI over- modulation strategies: analysis, comparison, and design,” IEEE Trans. Power Electron., vol. 13, no. 4, pp. 674-689, July 1998.
    [27] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998.
    [28] H. C. Chen, M. S. Huang, C. M. Liaw, Y. C. Chang, P. Y. Yu and J. M. Huang, “Robust current control for brushless DC motor,” in Proc. IEE Electric Power Applicat., vol. 147, no. 6, pp. 503-512, 2000.
    [29] M. N. Uddin, T. S. Radwan, G. H. George and M. A. Rahman, “Performance of current controllers for VSI-fed IPMSM drive,” IEEE Trans. Ind. Appl., vol. 36, no. 6, pp. 1531-1538, 2000.
    [30] N. Mohan, T. M. Undeland and W. P. Robbims, Power Electronics: Converters, Applications and Design. New York: John Wiley & Sons, 2003.
    [31] J. Bastos, A. Monti and E. Santi, “Design and implementation of a nonlinear speed control for a PM synchronous motor using the synergetic approach to control theory,” in Proc. IEEE PESC., 2004, vol. 5, pp. 3397-3402.
    [32] Y. A. R. Ibrahim, M. M. Abu-Elnaga and M. A. El-Sayad, “Robust speed control of PMSM drive system with lag time compensation,” in Proc. IEEE ICEEC, 2004, pp. 823-829.
    [33] C. B. Butt, M. A. Hoque and M. A. Rahman, “Simplified fuzzy-logic-based MTPA speed control of IPMSM drive,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1529-1535, 2004.
    [34] T. S. Radwan and M. M. Gouda, “Intelligent speed control of permanent magnet synchronous motor drive based-on neuro-fuzzy approach,” in Proc. IEEE PEDS, 2005, vol. 1, pp. 602-606.
    [35] M. Nour, I. Aris, N. Mariun and S. Mahmoud, “Hybrid model reference adaptive speed control for vector controlled permanent magnet synchronous motor drive,” in Proc. IEEE PEDS, 2005, vol. 1, pp. 618-623.
    [36] Y. A-R. I. Mohamed and E. F. El-Saadany, “A current control scheme with an adaptive internal model for torque ripple minimization and robust current regulation in PMSM drive systems,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 92-100, 2008.
    [37] F. Morel, J. M. Retif, L. S. Xuefang and C. Valentin, “Permanent magnet synchronous machine hybrid torque control,” IEEE Trans. Ind. Elctron., vol. 55, no. 2, pp. 501-511, 2008.

    D. Tuning control and filed-weakening control
    [38] H. C. Chen and C. M. Liaw, “Sensorless control via intelligent commutation tuning for brushless DC motor,” in Proc. IEE Electric Power Appl., vol. 146, no. 6, pp. 678-684, 1999.
    [39] D. N. Zmood and D. G. Holmes, “Stationary frame current regulation of PWM inverters with zero steady-state error,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 814-822, 2003.
    [40] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three-phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998.
    [41] M. N. Uddin, T. S. Radwan, G. H. George and M. A. Rahman, “Performance of current controllers for VSI-Fed IPMSM drive,” IEEE Trans. Ind. Appl., vol. 36, no. 6, pp. 1531-1538, 2000.
    [42] C. C. Liaw, C. M. Liaw, H. C. Chang and M. S. Huang, “Robust current control and commutation tuning for an IPMSM drive,” in Proc. IEEE APEC, 2003, vol. 2, no. 2, pp. 1045-1051,
    [43] C. Butt, M. A. Hoque and M. A. Rahman, “Simplified fuzzy logic based MTPA speed control of IPMSM Drive,” in Proc. IEEE IAS, 2003, vol. 1, no. 1, pp. 499-506.
    [44] C. Mademlis, J. Xypteras and N. Margaris, “Loss minimization in surface permanent-magnet synchronous motor drives,” IEEE Trans. Ind. Electorn., vol. 47, no. 1, pp. 115-122, 2000.
    [45] R. Monajemy and R. Krishnan, “Implementation strategies for concurrent flux weakening and torque control of the PM synchronous motor,” in Proc. IEEE IAS, 1995, vol. 1, pp. 238-245.
    [46] M. M. Bech, T. S. Frederiksen and P. Sandholdt, “Accurate torque control of saturated interior permanent magnet synchronous motors in the field-weakening region,” in Proc. IEEE IAS, 2005, vol. 4, pp. 2526-2532.
    [47] T. Schneider, T. Koch and A. Binder, “Comparative analysis of limited field weakening capability of surface mounted permanent magnet machines,” in Proc. IEE Electric Power Appl., vol. 151, no. 1, pp. 76-82, 2004.
    [48] J. X. Xu, S. K. Panda, Y. J. Pan, T. H. Lee and B. H. Lam, “A modular control scheme for PMSM speed control with pulsating torque minimization,” IEEE Trans. Ind. Electorn., vol. 51, no. 3, pp. 526-536, 2004.
    [49] P. Mattavelli, L. Tubiana and M. Zigliotto, “Torque-ripple reduction in PM synchronous motor drives using repetitive current control,” IEEE Trans. Power Electorn., vol. 20, no. 6, pp. 1423-1431, 2005.

    E. Switching-mode rectifiers and front-end AC/DC converters
    [50] W. Huai and I. Batarseh, “Comparison of basic converter topologies for power factor correction,” in Proc. IEEE Southeastcon, 1998, pp. 348-353.
    [51] J. A. Pomilio and G. Spiazzi, “A low-inductance line-frequency commutated rectifier complying with EN 61000-3-2 standards,” IEEE Trans. Power Electron., vol. 17, no. 6, pp. 963-970, 2002.
    [52] A. Kandianis, S. N. Manias, “A comparative evaluation of single-phase SMR converters with active power factor correction,” in Proc. IEEE IECON, 1994, vol. 1,  no. 1, pp. 244-249.
    [53] P. N. Ekemezie, “Design of a power factor correction AC-DC converter,” in Proc. IEEE AFRCON, 2007, pp. 1-8.
    [54] M. Dawande and G. K. Dubey, “Switching techniques for switch mode rectifier,” in Proc. IEEE PEDS, 1999, vol. 1, no. 1, pp. 167-173.
    [55] O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, May 2003.
    [56] G. Moschopoulos and P. Jain, “Single-phase single-stage power-factor-corrected converter topologies,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 23-35, 2005.
    [57] H. C. Chen, S. H. Li and C. M. Liaw, “Switch-mode rectifier with digital robust ripple compensation and current waveform controls,” IEEE Trans. Power Electron., vol. 19, no. 2, pp. 560-566, 2004.

    F. Random switching methods
    [58] T. G. Habetler and D. M. Divan, “Acoustic noise reduction in sinusoidal PWM drives using a randomly modulated carrier,” IEEE Trans. Power Electron., vol. 6, no. 3, pp. 356-363, 1991.
    [59] C. M. Liaw, Y. M. Lin, C. H. Wu and K. I. Hwu, “Analysis, design, and implementation of a random frequency PWM inverter,” IEEE Trans. Power Electron., vol. 15, no. 5, pp. 843-854, 2000.
    [60] B. J. Kang and C. M. Liaw, “Random hysteresis PWM inverter with robust spectrum shaping,” IEEE Trans. Aerosp. Electron. Syst., vol. 37, no. 2, pp. 619-629, 2001.
    [61] B. J. Kang and C. M. Liaw, "Development of a robust random switching hysteresis PWM inverter for linear positioning control," Electric Power Components and Systems, vol. 30, no. 7, pp. 741-767. 2002.
    [62] S. H. Li and C. M. Liaw, “On the DSP-based switch-mode rectifier with robust varying-band hysteresis PWM scheme,” IEEE Trans. Power Electron., vol. 19, no. 6, pp. 1417-1425, 2004.

    G. Sensorless control
    [63] J. P. Johnson, M. Ehsani and Y. Guzelgunler, “Review of sensorless methods for brushless DC,” in Proc. IEEE IAS, vol. 1, 1999, pp. 143-150.
    [64] N. Matsui, “Sensorless PM brushless DC motor drives,” IEEE Trans. Ind. Electron., vol. 43, no. 2, pp. 300-308, April 1996.
    [65] M. Schroedl, “Sensorless control of permanent-magnet synchronous machines: An overview,” in Proc. EPE-PEMC, 2004.
    [66] D. Montesinos, S. Galceran, A. Sudria, O. Gomis and F. Blaabjerg, “Low cost sensorless control of permanent magnet motors an overview and evaluation,” in Proc. IEEE Electric Machines and Drives Conference, 2005, pp. 1681-1688.
    [67] A. H. Wijenayake, J. M. Bailey, and M. Naidu, “A DSP-based position sensor elimination method with on-line parameter online identification scheme for permanent magnet synchronous motor drives”, in Proc. IEEE IAS, 1995, vol. 1, pp. 207-215.
    [68] R. Mizutani, T. Takeshita and N. Matsui, “Current model-based sensorless drives of salient-pole PMSM at low speed and standstill,” IEEE Trans. Ind. Appl., vol. 34, no. 4, pp. 841-846, July-Aug. 1998.
    [69] S. Morimoto, M. Sanada and Y. Takeda, “Mechanical sensorless drives of IPMSM with online parameter identification,” in Proc. IEEE IAS, Oct. 2005, vol. 1, no.1, pp. 297-303.
    [70] S. Ichikawa, M. Tomita, S. Doki, and S. Okuma, “Sensorless control of permanent-magnet synchronous motors using online parameter identification based on system identification theory,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 363-372, April 2006.
    [71] M. Rashed, P. F. A. MacConnell, A. F. Stronach and P. Acarnley, “Sensorless indirect-rotor-field-orientation speed control of a permanent magnet synchronous motor with stator resistance estimation,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1664-1675, June 2007.
    [72] S. Ichikawa, M. Tomita, S. Doki and S. Okuma, “Indirect-rotor-field-orientation speed control of a permanent magnet synchronous motor with stator resistance estimation,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 363-372, April 2006.
    [73] M. C. Huang, A. J. Moses, and F. Anayi, “The comparison of sensorless estimation techniques for PMSM between extended Kalman filter and flux-linkage observer,” in Proc. IEEE APEC, March 2006, vol. 2, pp. 654-659.
    [74] S. Zhe, Z. Rongxiang and W. Jing, “Sensorless Control Method of PMSM Based on Extended Kalman Filter,” in Proc. WCICA, vol. 2, pp. 8093-8097, 2006.
    [75] J. Solsona, M. I. Valla, and C. Muravchik, “A nonlinear reduced order observer for permanent magnet synchronous motors”, IEEE Trans. Ind. Electron., vol. 43, no. 4, pp. 38-43, August 1996.
    [76] J. Kim and S. Sul, “High performance PMSM drives without rotational position sensors using reduced order observer”, in Proc. IEEE IAS, vol.1, pp. 75-82, 1995.
    [77] Z. Chen, M. Tomita, S. Doki and S. Okuma, “New adaptive sliding observers for position- and velocity sensorless controls of brushless DC motors,” IEEE Trans. Ind. Electron., vol. 47, no. 3, June 2000, pp.582-591.
    [78] M. Tomita, T. Senjyu, S. Doki and S. Okuma, “New sensorless control for brushless DC motors using disturbance observers and adaptive velocity estimations,” IEEE Trans. Ind. Electron., vol. 45, no. 2, pp. 274-282, 1998.
    [79] A. Piippo, M. Hinkkanen and J. Luomi, “Analysis of an adaptive observer for sensorless control of PMSM drives”, in Proc. IEEE IECON, 2005, pp. 1474-1479.
    [80] S. Morimoto, K. Kawamoto, M. Sanada, and Y. Takeda, “Sensorless control strategy for salient-pole PMSM based on extended EMF in rotating reference frame,” IEEE Trans. Ind. Electron., vol. 38, no. 4, pp. 1054-1061, 2002.
    [81] H. C. Chen and C. M. Liaw, “Sensorless control via intelligent commutation tuning for brushless DC motor,” IEE Proc. Electric Power Applications, vol. 146, no. 6, pp. 678 -684, 1999,
    [82] T. D. Batzel and K. Y. Lee, “An approach to sensorless operation of the permanent magnet synchronous motor using diagonally recurrent neural networks,” IEEE Trans. Energy Convers., vol. 18, no. 8, pp. 100-106, 2003.
    [83] S. J. Ki, L. J. Kun and L. D. Choon, “Sensorless speed control of nonsalient permanent-magnet synchronous motor using rotor-position-tracking PI controller,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 399-405, 2006.
    [84] M. Konghirun and L. Xu, “A fast transient-current control strategy in sensorless vector-controlled permanent magnet synchronous motor,” IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1508-1512, 2006.
    [85] T. Senjyu, N. Urasaki and K. Uezato, “Sensorless vector control of brushless DC motors based on instantaneous power,” in Proc. IEEE CAEP, 1996, pp. 235-240.
    [86] M. Tomita, M. Satoh, H. Yamaguchi, S. Dokim and S. Okuma, “Sensorless estimation of rotor position of cylindrical brushless DC motors using eddy current”, in Proc. IEEE IECON, 1996, vol. 3, no. 3, pp. 24-28.
    [87] J. P. Johnson and M. Ehsani, “Sensorless brushless DC control using a current waveform Anomaly,” in Proc. IEEE IAS, 1999, vol. 1, no.1, pp. 151-158.
    [88] S. Seman and J. Luomi, “Application of carrier frequency signal injection in sensorless control of a PMSM drive with forced dynamics,” in Proc. IEEE PEDS, 2003, vol. 2, no. 2, pp. 1663-1668.
    [89] A. Piippo, M. Hinkkanen and J. Luomi, “Sensorless control of PMSM drives using a combination of voltage model and HF signal injection,” in Proc. IEEE IAS, 2004, vol. 2, no. 2, pp. 964-970.
    [90] J. H. Jang, J. I. Ha, M. Ohto, K. Ide and S. K. Sul, “Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1595-1604, 2004.
    [91] Y. Yan and J. G. Zhu, “A survey of sensorless initial rotor position estimation schemes for permanent magnet synchronous motors”, in Proc. AUPEC, 2004, pp. 26-29.
    [92] J. Persson, M. Markovic and Y. Perriard, “A new standstill position detection technique for nonsalient permanent-magnet synchronous motors using the magnetic anisotropy method, ” IEEE Trans. Magn., vol. 43, no. 2, pp. 554-560, 2007.

    H. Others
    [93] “A New Version Intelligent Power Module for High Performance Motor,” http://www. mitsubishichips.com/Global/ conference/pdf/Paper2.pdf
    [94] N. A. Allaith and D. A. Grant, “Intelligent power modules for voltage-fed converter drives,” in Proc. IEEE CCECE, 2000, vol. 2, pp. 918- 921.
    [95] “International Rectifier-inMotion Motor Control Product Information,” http://www.ir f.com/product-info/imotion/imotionpmt.html.
    [96] MITSUBISHI SEMICONDUCTOR PS21265-P/AP datasheet, http://mitsubishichip.c om/Global/common/cfm/ePartProfile.cfm?FILENAME=ps21265-p(-ap)_e.pdf.
    [97] F. Nekoogar and G. Moriarty, Digital Control Using Digital Signal Processing, New Jersey: Prentice Hall, Inc., 1999.
    [98] G. F. Franklin, J. D. Powell and A. Emami-Naeini, Feedback Control of Dynamic Systm, 4th ed. New Jersey: Prentice Hall, Inc., 2002.
    [99] “Digital signal controller TMS320F2912 data sheet,” http://www.project.ex.ac.uk/ uav/tms320f2812.pdf.
    [100] Y. C. Chang and C. M. Liaw, “On the Design of Power Circuit and Control Scheme for Switched Reluctance Generator,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 445 – 454, 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE