研究生: |
張唐綸 Chang, T.L. |
---|---|
論文名稱: |
以離散元素法耦合計算流體力學 模擬 LTCC 元件在滾筒中的電鍍行為 Numerical Simulation of Electroplating Process of LTCC Devices by Discrete Element Method (DEM) coupling with Computational Fluid Dynamics (CFD) |
指導教授: |
簡朝和
Jean, J.H. |
口試委員: |
李嘉甄
Li, Chia-Chen 鍾昇恆 Chung, Sheng-Heng 施岳廷 Shih, Yueh-Ting |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 43 |
中文關鍵詞: | 離散元素法 、雙向耦合 、計算流體力學 、滾鍍 、LTCC 元件 |
外文關鍵詞: | Discrete Element Method, Computational Fluid Dynamics, LTCC, Electroplating, Barrel Plating |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以離散元素法(Discrete Element Method, DEM)雙向耦合(Two-way Coupling)計算流體力學(Computational Fluid Dynamics, CFD)進行數值運算,模擬 接觸以及分佈,更藉由滾鍍實驗量測表面電極厚度,進行實驗驗證。此方法將每 顆 LTCC 元件視為單獨元素,並將 LTCC 在電鍍液中所受到的不同作用力如拖曳 力(Drag Force)、虛擬質量力(Virtual Mass Force)、浮力(Bouyoug Force)等納入計 算,利用數值運算模擬其與鋼珠在滾桶中與有限時間下的接觸行為與 LTCC 元件 的分佈行為。結果顯示,隨著 LTCC 元件表面電極與鋼球接觸頻率的增加,以及 LTCC 元件在有效電鍍區中的滯留時間增加,鍍鎳速率隨之增加,但其厚度均勻 性降低。此外,隨著氧化鋯容積率與鋼球尺寸的增加,鍍鎳速率降低,然而其厚 度均勻性增加。而改變陶瓷珠密度,發現對鍍鎳速率以及表面電極厚度均勻性無 顯著影響。
The electroplating process of LTCC devices has been assessed by numerical simulation using discrete element method (DEM) with two-way coupling of computational fluid dynamics (CFD), and experimentally verified by barrel plating. The results show that the plating rate of Ni increases, but its thickness uniformity decreases with increasing contact frequency between the surface electrode of LTCC devices and steel balls. Moreover, the plating rate of Ni decreases, but its thickness uniformity increases with increasing ZrO2 bead loading, and steel ball size. However, insignificant correlation between the density of ceramic beads and plating rate of Ni and its thickness uniformity is found.
[1] R. Yamazaki, “Basic Considerations of Barrel Plating”, 實物表面技術, Vol.35, No3 (1988).
[2] Y. Tsuji, T. Tanaka and T. Ishida, “Lagrangian Numerical Simulation of Plug Flow of Cohesionless Particle in a Horizontal Pipe”, Powder Technol.71, 239-250 (1992).
[3] P.A. Cundall and O.D.L. Strack, “A Discrete Numerical Model for Granular Assemblies”, Geotechnique 29, 47-65 (1979).
[4] H. Hertz, “On the Contact of Elastic Solids”, J. Reine Angewandte Mathematik, 92,156-171 (1882).
[5] R.D. Mindlin and H. Deresiewicz, J. Appl. Mech. Trans. ASME, 20 (1953). [6] L. Huilin, and D. Gidaspow, “Hydrodynamics of Binary Fluidization in a Riser: CFD Simulation Using Two Granular Temperatures”, Chemical Engineering Science, 58, 3777–3792 (2003).
[7] M. Ishii and K. Mishima, “Two- fluid Model and Hydrodynamic Constitutive Relations”, Nuclear Engineering and Design, 82, 107–126 (1984). [8] Y. C. Chung, T.C. Kuo and S. S. Hsiau, “Effect of Various Inserts on Flow Behavior of Fe2O3 Beads in a Three-dimensional Silo Subjected to Cyclic Discharge-Part I: Exploration of Transport Properties”, Powder Technology, 400 (2022)
[9] Y. C. Chung, J.Y. Ooi, “Benchmark Tests for Verifying Discrete Element Modeling Codes at Particle Impact Level”, Granular Matter, 13, 643-656 (2011) [10] R. Jullien, P. Meakint, “A Mechanism for Particle Size Segregation in Three Dimensions”, Nature, 344, 425-427 (1990)