研究生: |
林宜玄 Lin, Yi-Hsuan |
---|---|
論文名稱: |
一個高能源效率十二位元每秒取樣一億次之時間交錯連續漸進式類比數位轉換器使用共用半休眠切換技術 An Energy-Efficient 12b 100MS/s Time-Interleaved SAR ADC Using Shared Semi-Resting Switching Technique |
指導教授: |
謝志成
Hsieh, Chih-Cheng |
口試委員: |
洪浩喬
Hong, Hao-Chiao 邱進峯 Chiu, Chin-Fong 陳柏宏 Chen, Po-Hung |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 108 |
中文關鍵詞: | 高速 、低電壓 、高能源效率 、時間交錯式 、連續漸進式類比數位轉換器 |
外文關鍵詞: | high-speed, low-voltage, energy-efficient, time-interleaved, SAR ADC |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一個使用共用半休眠切換技術以求高能源效率的12位元、每秒取樣1億次之時間交錯連續漸近式類比數位轉換器。
在物聯網應用當中,連網裝置通常以低電壓操作有較佳的能源效率表現也有較長的電池續航力,因此本論文之類比數位比較器設計在一個0.5伏與1伏雙供電之系統。低電壓循序漸近類比數位轉換器之轉換速率非常低,為了達到每秒取樣一億次的取樣速率,採用時間交錯式的系統架構。當中的子轉換器延續半休眠切換之概念,以求較低的電容切換功耗。本論文改良半休眠切換應用於時間交錯式架構,提出共用半休眠切換技術,透過重複使用閒置的子轉換器,降低所需之子轉換器總數。
本電路之原型晶片採用40奈米1P9M互補式金氧半導體製程製作,核心電路面積為600×870 μm2。在1.0/0.5 V供電以及每秒取樣1000萬次操作之下,本晶片可達到56.145 dB之訊號雜訊加失真比(SNDR),對應等效解析度(ENOB)為9.03位元。其功耗為35 μW,換算能源效率指標(Walden figure-of-merit, FoMW)為9.36 fJ/conversion-step。在取樣頻率為每秒取樣1億次時,僅達到46.121 dB之SNDR,ENOB為7.369位元,其功耗為284 μW,能源效率指標FoM為17.28 fJ/conversion-step。
This thesis presents a 12-bit 100MS/s time-interleaved (TI) successive-approximation register (SAR) analog-to-digital converter (ADC) using shared semi-resting (SSR) switching technique.
For Internet-of-Things (IoT) applications, the connecting devices usually operate in low voltage supply for better energy efficiency and longer lifetime of batteries. Thus, the proposed ADC is designed in a dual supply system of 0.5 V and 1 V. The conversion rate of a low-voltage SAR ADC is slow. To achieve targeted 100MS/s sampling rate, the ADC adopts time-interleaved architecture. The sub-ADCs inherit the low capacitor switching power concept of the semi-resting (SR) switching technique. This thesis proposes the shared semi-resting (SSR) switching technique, which is a reformed SR technique used in TI architecture. The total required number of sub-ADCs is reduced by re-using idle sub-ADCs.
The prototype was fabricated in 40 nm 1P9M CMOS technology with a core area of 600×870 μm2. At 1.0/0.5 V supply voltage and 10 MS/s sampling rate, the ADC achieves SNDR 56.145 dB with corresponding ENOB 9.03-bit and consumes a power of 0.035 mW, resulting in a Walden figure-of-merit (FoMW) 6.69 fJ/conversion-step. At 100 MS/s sampling rate, the ADC achieves SNDR 46.121 dB with ENOB 7.369-bit and consumes a power of 284 μW, resulting FoMW 17.28 fJ/conversion-step.
[1] A. Klinefelter, N. E. Roberts, Y. Shakhsheer, P. Gonzalez, A. Shrivastava, A. Roy, K. Craig, M. Faisal, J. Boley, S. Oh, Y. Zhang, D. Akella, D. D. Wentzloff, and B. H. Calhoun, “21.3 A 6.45μW Self-Powered IoT SoC with Integrated Energy-Harvesting Power Management and ULP Asymmetric Radios,” 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, pp. 1-3, 2015.
[2] Broadcomm Inc. "Max WiFi," http://maxwifi.org/.
[3] Tony Chan Carusone, David Johns, and Kenneth W. Martin, Analog Integrated Circuit Design, 2nd ed., Hoboken, NJ: John Wiley & Sons, 2012.
[4] B. Murmann. "ADC Performance Survey 1997-2019," [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html.
[5] C. Liu, S. Chang, G. Huang, Y. Lin, C. Huang, C. Huang, L. Bu, and C. Tsai, “A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error compensation,” 2010 IEEE International Solid-State Circuits Conference - (ISSCC), pp. 386-387, 2010.
[6] F. van der Goes, C. Ward, S. Astgimath, H. Yan, J. Riley, J. Mulder, S. Wang, and K. Bult, “11.4 A 1.5mW 68dB SNDR 80MS/s 2× interleaved SAR-assisted pipelined ADC in 28nm CMOS,” 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 200-201, 2014.
[7] Y. Lim, and M. P. Flynn, “11.5 A 100MS/s 10.5b 2.46mW comparator-less pipeline ADC using self-biased ring amplifiers,” 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 202-203, 2014.
[8] M. Inerfield, A. Kamath, Su Feng, J. Hu, Yu Xinyu, V. Fong, O. Alnaggar, Lin Fang, and T. Kwan, “An 11.5-ENOB 100-MS/s 8mW dual-reference SAR ADC in 28nm CMOS,” 2014 Symposium on VLSI Circuits Digest of Technical Papers, pp. 1-2, 2014.
[9] Y. Lim, and M. P. Flynn, “26.1 A 1mW 71.5dB SNDR 50MS/S 13b fully differential ring-amplifier-based SAR-assisted pipeline ADC,” 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, pp. 1-3, 2015.
[10] C. C. Liu, “27.4 A 0.35mW 12b 100MS/s SAR-Assisted Digital Slope ADC in 28nm CMOS,” 2016 IEEE International Solid-State Circuits Conference (ISSCC), pp. 462-463, 2016.
[11] B. Razavi, Design of Analog CMOS Integrated Circuits, International ed., Boston: McGraw-Hill, 2010.
[12] M. Shinagawa, Y. Akazawa, and T. Wakimoto, “Jitter Analysis of High-Speed Sampling Systems,” IEEE Journal of Solid-State Circuits, vol. 25, no. 1, pp. 220-224, 1990.
[13] M. van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel, E. A. M. Klumperink, and B. Nauta, “A 10-bit Charge-Redistribution ADC Consuming 1.9μW at 1 MS/s,” IEEE Journal of Solid-State Circuits, vol. 45, no. 5, pp. 1007-1015, 2010.
[14] P. M. Figueiredo, and J. C. Vital, “Kickback Noise Reduction Techniques for CMOS Latched Comparators,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 7, pp. 541-545, 2006.
[15] C. C. Liu, S. J. Chang, G. Y. Huang, and Y. Z. Lin, “A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure,” IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 731-740, 2010.
[16] S. E. Hsieh, and C. C. Hsieh, “A 0.44-fJ/Conversion-Step 11-Bit 600-kS/s SAR ADC With Semi-Resting DAC,” IEEE Journal of Solid-State Circuits, vol. 53, no. 9, pp. 2595-2603, 2018.
[17] Zhou Yuan, Xu Benwei, and Chiu Yun, “A 12b 160MS/s Synchronous Two-Step SAR ADC Achieving 20.7fJ/step FoM with Opportunistic Digital Background Calibration,” 2014 Symposium on VLSI Circuits Digest of Technical Papers, pp. 1-2, 2014.
[18] W. Kim, H. K. Hong, Y. J. Roh, H. W. Kang, S. I. Hwang, D. S. Jo, D. J. Chang, M. J. Seo, and S. T. Ryu, “A 0.6 V 12 b 10 MS/s Low-Noise Asynchronous SAR-Assisted Time-Interleaved SAR (SATI-SAR) ADC,” IEEE Journal of Solid-State Circuits, vol. 51, no. 8, pp. 1826-1839, 2016.
[19] M. Tamba, A. Shimizu, H. Munakata, and T. Komuro, “A Method to Improve SFDR with Random Interleaved Sampling Method,” Proceedings International Test Conference 2001 (Cat. No.01CH37260), pp. 512-520, 2001.
[20] S. Devarajan, L. Singer, D. Kelly, T. Pan, J. Silva, J. Brunsilius, D. Rey-Losada, F. Murden, C. Speir, J. Bray, E. Otte, N. Rakuljic, P. Brown, T. Weigandt, Q. Yu, D. Paterson, C. Petersen, J. Gealow, and G. Manganaro, “A 12-b 10-GS/s Interleaved Pipeline ADC in 28-nm CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 52, no. 12, pp. 3204-3218, 2017.
[21] S. Devarajan, L. Singer, D. Kelly, S. Kosic, T. Pan, J. Silva, J. Brunsilius, D. Rey-Losada, F. Murden, C. Speir, J. Bray, E. Otte, N. Rakuljic, P. Brown, T. Weigandt, Q. Yu, D. Paterson, C. Petersen, and J. Gealow, “16.7 A 12b 10GS/s Interleaved Pipeline ADC in 28nm CMOS Technology,” 2017 IEEE International Solid-State Circuits Conference (ISSCC), pp. 288-289, 2017.
[22] J. Y. Lin, and C. C. Hsieh, “A 0.3 V 10-bit SAR ADC With First 2-bit Guess in 90-nm CMOS,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 3, pp. 562-572, 2017.
[23] S. E. Hsieh, and C. C. Hsieh, “A 0.4-V 13-bit 270-kS/s SAR-ISDM ADC With Opamp-Less Time-Domain Integrator,” IEEE Journal of Solid-State Circuits, vol. 54, no. 6, pp. 1648-1656, 2019.
[24] C. C. Liu, S. J. Chang, G. Y. Huang, Y. Z. Lin, and C. M. Huang, “A 1V 11fJ/conversion-step 10bit 10MS/s Asynchronous SAR ADC in 0.18µm CMOS,” 2010 Symposium on VLSI Circuits, pp. 241-242, 2010.
[25] S. E. Hsieh, and C. C. Hsieh, “A 0.3-V 0.705-fJ/Conversion-Step 10-bit SAR ADC With a Shifted Monotonic Switching Procedure in 90-nm CMOS,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 12, pp. 1171-1175, 2016.
[26] H. Tai, Y. Hu, H. Chen, and H. Chen, “11.2 A 0.85fJ/conversion-step 10b 200kS/s Subranging SAR ADC in 40nm CMOS,” 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 196-197, 2014.
[27] C. Y. Liou, and C. C. Hsieh, “A 2.4-to-5.2fJ/conversion-step 10b 0.5-to-4MS/s SAR ADC with Charge-Average Switching DAC in 90nm CMOS,” 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 280-281, 2013.
[28] V. Hariprasath, J. Guerber, S. Lee, and U. Moon, “Merged Capacitor Switching Based SAR ADC with Highest Switching Energy-Efficiency,” Electronics Letters, vol. 46, no. 9, pp. 620-621, 2010.
[29] C. P. Huang, H. W. Ting, and S. J. Chang, “Analysis of Nonideal Behaviors Based on INL/DNL Plots for SAR ADCs,” IEEE Transactions on Instrumentation and Measurement, vol. 65, no. 8, pp. 1804-1817, 2016.
[30] W. Tseng, W. Lee, C. Huang, and P. Chiu, “A 12-bit 104 MS/s SAR ADC in 28 nm CMOS for Digitally-Assisted Wireless Transmitters,” IEEE Journal of Solid-State Circuits, vol. 51, no. 10, pp. 2222-2231, 2016.
[31] B. Sung, D. Jo, I. Jang, D. Lee, Y. You, Y. Lee, H. Park, and S. Ryu, “26.4 A 21fJ/conv-step 9 ENOB 1.6GS/S 2× time-interleaved FATI SAR ADC with background offset and timing-skew calibration in 45nm CMOS,” 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, pp. 1-3, 2015.