研究生: |
蘇旺申 Wang Shen Su |
---|---|
論文名稱: |
電漿處理技術於奈/微米機電系統之應用 Application on nano/micro electromechanical systems using plasma treatment technology |
指導教授: |
方維倫
Weileun Fang 蔡明蒔 Ming Shih Tsai |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2006 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 190 |
中文關鍵詞: | 電漿處理技術 、薄膜機械性質 、三維微結構形變控制 、三維表面加工 、奈米顆粒自組裝模板 |
外文關鍵詞: | plasma treatment technology, mechanical properties of thin film, control of three dimension micro structure deflection, three dimension surface fabrication, nano particles assembled template |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統的奈/微米系統元件,主要是利用標準的半導體製程與微加工製程來製作,使得系統元件的功能及應用受到諸多的限制。本論文提出利用電漿處理技術整合奈/微米加工製程,藉由不同的電漿特性的輔助,使奈/微米元件的製程與整合更具彈性,以實現更多功能變化及應用的微系統。在本論文中的研究內容主要可分為四部份。
第一部份是利用氧、氫及氨電漿來對薄膜材料作表面處理,藉由電漿調變表面特性來加強對奈/微米系統元件的功能性及應用性。另外,透過控制不同的電漿種類、處理參數與後續退火程序,能進一步的改善薄膜性質,如表面粗糙度調變、表面化學鍵結控制、硬度、楊氏系數等。此部份的薄膜材料是以二氧化矽及多晶矽薄膜來作為此技術實現的例子。
第二部份是利用氨電漿對二維的微結構作表面處理,並配合奈/微米加工技術製作出懸浮的微結構。藉由電漿處理過後的微結構能產生不同的等效力矩變化,來調變其三維懸浮結構的形變特性。另外,設計不同的電漿處理位置及區域能進一步的控制懸浮微結構的形變結果,如形狀、曲率及挫曲方向等。此部份的懸浮微結構是以微懸臂樑及微橋式樑來作為此技術實現的例子。
在第三部份提出一個新型三維結構表面加工技術,在高深寬比的三維結構表面進行微影與金屬沈積。此部份三維結構表面加工技術主要整合電漿處理技術、單分子自組裝技術與無電鍍接觸置換法,來達成三維結構表面之微影與金屬沈積。利用此三維結構表面加工技術,在不同深度(50-200μm)與不同側壁角度(54.7-90°)的矽凹槽上,成功的完成金屬導線結構定義與沈積。另外在具有懸浮微結構的矽凹槽表面上,亦成功的定義與沈積金屬導線。特別的是,在懸浮微結構底下被遮蓋住的矽凹槽表面,亦能成功的定義與沈積金屬導線。最後,利用此技術實際應用在微靜電致動器元件上。
第四部份是利用電漿對矽基材表面作改質,並配合自組裝單分子接合與定義來製作奈/微米顆粒自組裝模板。利用電漿處理表面區域與自組裝單分子表面區域間不同的親、疏水特性質,來使含有奈/微米顆粒的液珠藉由毛細力進行自組裝。此技術中主要藉由氧與氫電漿處理過後的矽基材表面能產生不同的液珠接觸角度,進一步來控制奈/微米顆粒自組裝高度。另外,使用不同的奈/微米顆粒尺寸和定義自組裝分子的微影方法,可控制顆粒自組裝圖形的解析度與線寬。此部份的奈/微米顆粒自組裝模板是利用氧及氫電漿處理後,藉由商用奈米顆粒聚苯乙烯與二氧化矽膠體顆粒作為此技術實現的例子。
The traditional nano/micro systems devices were fabricated using standard semiconductor processes as well as micro fabrication processes. Thus the design and applications of the nano/micro devices are frequently limited to these processes. In this study, the integration of various plasma treatment technologies with the micro fabrication processes has successfully been established. The applications of the plasma treatments on various nano/micro devices are also demonstrated. This study is organized and presented as the following four parts:
Firstly, the tuning of thin film properties by means of plasma surface modification was discussed. To demonstrate the feasibility of this approach, various plasma treatments, including O2, H2 and NH3 atmospheres, on silicon oxide and ploy silicon films were investigated. Other parameters including, treatment conditions and annealing process, were also used to tune the thin film characteristics (e.g. surface roughness, surface chemical bonding, hardness, Young’s modulus and residual stress).
In the second part, the NH3 plasma was employed to modify the surface characteristic of thin film. Thus, the shape of suspended micromachined structures made of the treated film can be tuned. Moreover, the combination of various plasma treatment positions and areas could further control the deflection profile of three dimension of micro suspension structure, such as shape, curvature and buckling direction. To show the feasibility of this approach, the shape-control of bending cantilevers and buckling bridges (clamped-clamped beam) were demonstrated.
In the third part, the lithography and deposition on a complicated three dimension substrate surface were demonstrated under the assistant of plasma treatment. The selective film deposition on three dimension surface and even underneath the suspended microstructures is realized using the contact displacement electroless plating. In applications, the Cu film was conformally plated and patterned on a Si substrate with 50µm~200µm deep cavities and 54.7□~90□sidewalls. Moreover, the Cu electrode underneath suspended microbeams was also plated.
Finally, this study has established a plasma-assisted particle assembly template to fabricate nano/micro patterns through self-assembly on hydrophilic regions. The plasma surface modification is employed to tune the contact angle of droplet, so as to further tune the shape and thickness of self-assembled particles. In applications, the micro/nano patterns formed by commercial polystyrene (PS) and colloidal silica slurry (Bayer-50CK) particles after O2 and H2 plasma treatments were successfully demonstrated.
參考文獻
1.K.E. Petersen, “Silicon as a mechanical material,” Proceedings of IEEE, 70, pp. 420-457, 1982.
2.Ming C. Wu, “Micromachining for Optical and Optoelectronic Systems,” Proceedings of IEEE, 85, pp. 1833-1856, 1997.
3.G. T. A. Kovacs, N. I. Maluf, and K. E. Petersen, “Bulk micromachining of silicon,” Proceedings of IEEE, 86, pp. 1536-1551, 1998.
4. J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface micromachining for microelectromechanical systems,” Proceedings of IEEE, 86, pp. 1552-1574, 1998.
5. R. S. Muller, and K. Y. Lau, “Surface-micromachined microoptical elements and systems,” Proceedings of IEEE, 86, pp. 1705-1720, 1998.
6. W. Fang and J. A. Wickert, “Determining mean and gradient residual stresses in thin films using micromachined cantilevers,” Journal of Micromechanicas and Microengineering, 6, pp.301-309, 1996.
7. J. F. Manceau, L. Robert, F. O. Bastien, C. Oytana and S. Biwersi, ”Measurement of residual stresses in a plate using a vibrational technique-application to electrolytic nickel coatings,” Journal of microelectromechanical systems, 5, pp. 243-249, 1996.
8. L. Kiesewetter, J. M. Zhang, D. Houdeau and A. Steckenborn, “Determination of Young’s moduli of micromechanical thin films using the resonance method, “ Sensors and Actuators A, 35, pp. 153-159, 1992.
9. O. Tabata, K. Kawahata, S. Sugiyama and I. Igarashi, “Mechanical property measurements of thin films using load-deflection of composite rectangular membranes,” Sensors and actuators A, 20, pp. 135-141, 1989.
10. J. H. Jou and L. J. Chen, “Simultaneous determination of the biaxial relaxation modulus and thermal expansion coefficient of regid-rod polymide films using a bending beam technique,” Macromolecules, 25, pp. 179-184, 1992.
11. J. J. Vlassak and W. D. Nix, “A new bulge test technique for the determination of Young’s modulus and Poisson’s ration of thin films,” J. Mater, Res., 7, pp. 3242-3249, 1992.
12. F. Volklein and H. Baltes, “A microstructure for measurement of thermal conductivity of polysilicon thin films,” Journal of microelectromechanical system, 4, pp. 193-196, 1992.
13. W. Fang and C.Y. Lo, “On the thermal expansion coefficients of thin films,” Sensors and Actuators A, 84, 310-314, 2000.
14. H. Mahfoz-Kotb, A.C.Salaun, T. Mohammed-Brahim, F. Le Bihan, M.El-Marssi, ”Polycrystalline silicon thin films for MEMS applications,” Thin Solid Films , 427, pp. 422-426, 2003.
15. Ioannis Chasiotis, Wolfgang G. Knauss, “The mechanical strength of polysilicon films: Part 2. Size efects associated with elliptical and circular perforations,” Journal of the Mechanics and Physics of Solids, 51, pp. 1551-1572, 2003.
16. Sherif Sedky, Paolo Fiorini, Matty Caymax, Stefano Loreti, Kris Baert, Lou Hermans, and Robert Mertens, ”Structural and mechanical properties of polycrystalline silicon germanium for micromachining applications,” Journal of microelectromechanical systems, 7 , pp. 365-372, 1998
17. M. C. Kim, S. H. Yang, J. -H. Boo and J. G. Han, “Surface treatment of metals using an atmospheric pressure plasma jet and their surface characteristics”,, Surface and Coatings Tech., 174-175, pp. 839-844, 2003.
18. W. S. Su, W. Fang, M. S. Tsai, “Tuning the Mechanical Properties of SiO2 Thin Film for MEMS Applications”, Mat. Res. Soc. Symp. Proc., 795, pp. U8.25.1-U8.25-4, 2003.
19. W. S. Su, W. Fang, M. S. Tsai, “Tuning the Mechanical Properties of Poly-Silicon Film by Surface Modification Using Plasma Treatment”, Mat. Res. Soc. Symp. Proc., 820, pp. O8.9.1-O8.9.4, 2004.
20. M. F. A. M. Van Hest, A. Klaver, D. C. Schram and M. C. M. Van De Sanden, “Argon oxygen plasma treatment of deposited organosilicon thin films”, Thin Solid Films, 449, pp. 40–51, 2004.
21. Y. H. Wang, R. Kumar, X. Zhou, J. S. Pan and J. W. Chai, “Effect of oxygen plasma treatment on low dielectric constant carbon-doped silicon oxide thin films”, Thin Solid Films, 473, pp. 132-136, 2005.
22. K. K. Choi, J. H. Yun and S. W. Rhee, “Effect of hydrogen remote plasma annealing on the characteristics of copper film”, Thin Solid Films, 429, pp. 255-260, 2003.
23. Y. M. Chung, M. J. Jung, J. G. Han, M. W. Lee and Y. M. Kim, “Atmospheric RF plasma effects on the film adhesion property”, Thin Solid Films, 447-448, pp. 354-358, 2004.
24. W. Brandl and G. Marginean, “ Functionalisation of the carbon nano fibres by plasma treatment”, Thin Solid Films, 447-448, pp. 181-186, 2004.
25. John A. Thornton and D. W. Hoffman, “Stress-related effects in thin films”, Thin Solid Films, 171, pp. 5-31, 1989.
26. M. Ohring, The Materials Science of Thin Films, San Diego, CA:Academic Press, 1992.
27. M. Ataka, A. Omodaka, and H. Fujita, “ A biomimetic micro motion system,” The 7th International Conference on Solid-State Sensors and Actuators (Transducer ’93), Yokohama, Japan, June, 1993, pp.38-41.
28. C. Goll, W. Bacher, B. Büstgens, D. Maas, W. Menz, and W. K. Schomburg, „Microvalves with bistable buckled polymer diaphragms,“ Journal of Micromechanics and Microengineering, 6, pp.77-79, 1996.
29. B. Hälg, “On a micro electro-mechanical nonvolatile memory cell,”IEEE Transactions on Electron Devices, 37, pp2230-2236.1990.
30. H. Mizoguchi, M. Ando, T. Mizuno, T. Takagi, and N. Nakajima, “Design and fabrication of light driven micropump,” Proceeding of the IEEE Micro Electro Mechanical Systems, Travemünde, Germany, Feb, 1992, pp31-36.
31. M. W. Judy, Y. H. Cho, R. T. Howe and A. P. Pisano, “Self adjusting microstructures (SAMS),”Proceeding of the IEEE MEMS’91 Workshop, Nara, Japan, February, 1991, pp.51-56.
32. G. Lin, C. J. Kim, S. Konish and H. Fujita, “Design, Fabrication, and testing of a C-shape actuator”, The 8th International Conference on Solid-State Sensors and Actuators (Transducers ’95), Eurosensors IX, Stockholm, Sweden, June, 1995, pp.1290-1293.
33. D. C. Miller, W. Zhang and V. M. Bright, “Microrelay packaging technology using flip-chip assembly, “Proceeding of the IEEE MEMS’00 Workshop, Miyazaki, Japan, January, 2000, pp.265-270.
34. R. T. Chen, H. Nguyen and M. C. Wu, “A low voltage micromachined optical switch by stress induced bending”, Micro electro mechanical systems, 1999, pp.424-428.
35. R. T. Chen, H. Nguyen and M. C. Wu, “A high speed low voltage stress induced micromachined 2/sp1 times/2 optical switch, “ IEEE photonics technology letters, 11, No. 11, pp.1396-1398, 1999.
36. M. A. Helmbrecht, U. Srinivasan, C. Rembe, and R. T. Howe, “Micromirrors for adaptive optics arrays”, The 11th International Conference on Solid-State Sensors and Actuators (Transducers ’01), Munich, Germany, June, 2001, pp.1290-1293.
37. V. A. Aksyuk, F. Pardo, C. A. Bolle, S. Arney, C. R. Giles and D. J. Bishop, “Lucent MicrostarTM micromirror array technology for large optical crossconnects, “Processdings of SPIE, Santa Clara, CA, September, 2000, pp.320-324.
38. Lucent Technology, Bell Laboratories Physical Science Research, http://www.bell-labs.com/org/physicalsciences/projects/mems/mems3.html
39. J. Z, Y. C. Lee, V. M. Bright and J. Neff, “ Digitally positioned micromirror for open loop controlled application, “Proceeding of the IEEE MEMS’02 Workshop, Heidelberg, Germany, January, 2000, pp.536-539.
40. Y.-P. Ho, M. Wu, H.-Y. Lin, and W. Fang, “A Robust and Reliable Stress-induced Self-assembly Supporting Mechanism for Optical Devices,” Microsystem Technologies, 11, pp. 214-220, 2005.
41. P. Kersten, S. Bouwstra, J. W. Petersen, “Photolithography on micromachined 3D surfaces using electrodeposited photoresists,” Sensors and Actuators A, 5, pp. 51-54, 1995.
42. Åse Richard, Pelle Rangsten, Carola Strandman and Ylva Bäcklund,” Decreasing the optical path length in an optoelectronic module using silicon micromachining, ” J. Micromech. Microeng. 9, 127–129, 1999.
43. Nga Phuong Pham, Pasqualina M. Sarro, Kiat T. Ng, and Joachim N. Burghartz,” IC-Compatible Two-Level Bulk Micromachining Process Module for RF Silicon Technology,” IEEE Transactions on electron devices, 48, pp.1756-1764, 2001.
44. L.S. Johansen, M. Ginnerup , J.T. Ravnkilde , P.T. Tang , B. Lochel ,“ Electroforming of 3D microstructures on highly structured surfaces,” Sensors and Actuators, 83, 156-160, 2000.
45. Nga Phuong Pham, E. Boellaard, Joachim N. Burghartz, and Pasqualina M. Sarro,” Photoresist Coating Methods for the Integration of Novel 3-D RF Microstructures,” Journal of microelectromechanical systems, 13, pp. 491-499, 2004.
46. V. K. Singh. M. Sasaki, K. Hane, Y. Watanabe, M. Kawakita, H. Hayashi,” Photolithography on three-dimrnsional structures using spray coated negative and positive photoresists” The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, p.1445-1448, June 5-9, 2005
47. Christian Krüger and Ulrich Jonas,” Synthesis and pH-Selective Adsorption of Latex Particles onto Photolithographically Patterned Silane Layers”, Journal of Colloid and Interface Science, 252, pp. 331–338 ,2002.
48. Joanna Aizenberg, Paul V. Braun, and Pierre Wiltzius, “Patterned Colloidal Deposition Controlled by Electrostatic and Capillary Forces” Physical Review Letters, 84, pp. 2997-3000, 2000.
49. Y. Masuda, M. Itoh, T. Yonezawa, and K. Koumoto,” Low-Dimensional Arrangement of SiO2 Particles,” Langmuir, 18, pp. 4155-4159, 2002.
50. Y. Masuda, K. Tomimoto, and K. Koumoto “Two-Dimensional Self-Assembly of Spherical Particles Using a Liquid Mold and Its Drying Process”, Langmuir, 19, pp. 5179-5183, 2003.
51. J. R. Ing Jr., W. Davern and J. Electrochem. Soc. 126, pp. 930,1979.
52. B. K. Tay, D. Sheeja, S. P. Lau, J. X. Guo, “Study of surface energy of tetrahedral amorphous carbon films modified in various gas plasma”, Diam. Relat. Mater., 12, pp. 2072-2076, 2003.
53. Young Suk Kim, Donggeun Jung and Suk-Ki Min, “Effects of N2 plasma treatment of titanium nitride/borophosphosilicate glass patterned substrates on metal organic chemical vapor deposition of copper”, Thin Solid Films, 349, pp. 36-42, 1999.
54. S. Y. Wu, R. D. Souza-Machado and D. D. Denton, “Dielectric and chemical modifications in polyimide films etched in O2/CF4 plasmas”, J. Vac. Sci. Technol., A 11, 1337-1345, 1993.
55. S. Takeda and S. Suzuki, “Improved adhesion of amorphous carbon thin films on glass by plasma treatment” J. Vac. Sci. Technol., A 22, pp. 1297-1300, 2004.
56. C. Yi and S. W. Rhee, “Cyclic plasma deposition of SiO2 films at low temperature (80°C) with intermediate plasma treatment”, J. Vac. Sci. Technol., A 20, pp. 398-402, 2002.
57. L. Miao, S. Tanemura, H. Watanabe, S. Toh, K. Kaneko, “Structural and compositional characterization of N2-H2 plasma surface-treated TiO2 thin films”, Appl. Surf. Sci., 244, 412-417, 2005.
58. Y. Chan and Q. Yu, “Electrochemical characterization of plasma polymer coatings in corrosion protection of aluminum alloys”, J. Vac. Sci. Technol., A 23, 991-997, 2005.
59. J. Lawrence, L. Li, “Wettability characteristics of carbon steel modified with CO2, Nd:YAG, excimer and high power diode laser”, Appl. Surf. Sci., 154-155, 664-669, 2000.
60. J. J. Kim, H. H. Park, S. H. Hyun, “The effects of plasma treatment on SiO2 aerogel film using various reactive (O2, H2, N2) and non-reactive (He, Ar) gases”, Thin Solid Films, 377-378, 525-529, 2000.
61. W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992).
62. B. Bhushan, V. N. Koinkar, “Microtribological studies of doped single-crystal silicon and polysilicon films for MEMS devices,” Sensors and Actuactors A, 57, pp. 91-102, 1996.
63. S. M. Spearing, “Materials issues in microelectromechanical systems (MEMS)”, Acta Mater., 48, pp. 179-196, 2000.
64. H. -W. Zhou, B. G. Kharas and P. I. Gouma, “Microstructure of thick polycrystalline silicon films for MEMS application”, Sensors and Actuators A: Physical, 104, pp. 1-5, 2003.
65. Kyung-Mun Byun and Won-Jong Lee, “Water absorption characteristics of fluorinated silicon oxide films deposited by electron cyclotron resonance plasma enhanced chemical vapor deposition using SiH4, SiF4”, Thin Solid Films, 376, pp. 26-31, 2000.
66. N. Banerji, J. Serra, P. González, S. Chiussi, E. Parada, B. León and M. Pérez-Amor, “Oxidation processes in hydrogenated amorphous silicon nitride films deposited by ArF laser-induced CVD at low temperatures”, Thin Solid Films, 317, pp. 214-218, 1998.
67. Y. Feng, M. Zhu, F. Liu, J. Liu, H. Han and Y. Han, “Structural evaluation of polycrystalline silicon thin films by hot-wire-assisted PECVD”, Thin Solid Films, 395, pp. 213–216, 2001.
68. A. Diniz, A. P. Sotero, G. S. Lujan, P. J. Tatsch and J. W. Swart, “High quality of ultra-thin silicon oxynitride films formed by low-energy nitrogen implantation into silicon with additional plasma or thermal oxidation”, Nucl. Instrum. Meth. B, 166-167, pp. 64-69, 2000.
69. F. Ténégal, A. Gheorghiu de la Rocque, G. Dufour, C. Sénémaud, B. Doucey, D. Bahloul-Hourlier, P. Goursat, M. Mayne and M. Cauchetier, “Structural determination of sintered Si3N4/SiC nanocomposite using the XPS differential charge effect”, Journal of Electron Spectroscopy and Related Phenomena, 109, pp. 241-248, 2000.
70. G. E. Muilenberg (Ed.), Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer, 1979.
71. J. Avila and J. L. Sacedón, “Reactivity at the Al/Si3N4 interface”, Appl. Phys. Lett., 66, pp. 757-759 (1995).
72. Y. F. Liu, Z. M. Ren, W. D. Song, D. S. H. Chen, “Electronic and optical properties of carbon nitride thin films synthesized by laser ablation under ion beam bombardment”, J. Appl. Phys., 84, pp. 2133-2137, 1998.
73. R. R. A. Syms, “Long travel electrothermally driven resonant cantilever microactuators”, J. Micromech. Microeng., 12, pp. 211-218, 2002.
74. S. Shoji and M. Esashi, “Microflow devices and systems”, J. Micromech. Microeng., 4, pp.157-171, 1994.
75. T. Numazawa, K. Miura, Y. Kawase Kand Hirata, “ Development of a MEMS optical switch composed of ribbon like actuator”, Sei. Technical Review, 56, pp. 37-40, 2003.
76. S Ryder, K B Lee, X Meng and L Lin, “ AFM characterization of out-of-plane high frequency microresonators”, Sensors and Actuators A 114, pp. 135-140, 2004.
77. E. H. Yang and S. S. Yang, “The quantitative determination of the residual stress profile in oxidized P+ silicon films”, Sensors and Actuators A, 54, pp.684-689, 1996.
78. A. J. Perry , D. E. Geist and D. Rafaja, “ Residual stress in cemented carbide following a coating process and after an ion implantation post-treatment of the coating”, Surface and Coatings Technology , 108-109, pp. 225–229, 1998.
79. J. K. Choi, J. Lee, J. B. Yoo, J. S. Maeng and Y. M. Kim, “Residual stress analysis of SiO2 films deposited by plasma enhanced chemical vapor deposition, Surface and Coatings Technology, 131, pp. 153-157, 2000
80. C. Godoy, E. A. Souza, L. M. M. ima and J. C. A. Batista, “ Correlation between residual stresses and adhesion of plasma sprayed coatings: effects of a post annealing treatment”, Thin Solid Films, 420-421, pp. 438-445, 2002.
81. X. L. Peng and T. W. Clyne, “ Residual stress and debonding of DLC films on metallic substrates”, Diamond and Related Materials, 7, pp. 944-950, 1998.
82. I. H. Kim, K. S. Kim, S. H. Kim and S. R. Lee, “Synthesis of cubic boron nitride films using a helicon wave plasma and reduction of compressive stress”, Thin Solid Films, 290-291, pp. 120-125, 1996.
83. Y. F. Lu, Z. M. Ren, W. D. Song and D. S. H. Chan, “Electronic and optical properties of carbon nitride thin films synthesized by laser ablation under ion beam bombardment”, J. Appl. Phys., 84 pp. 2133-2137, 1998.
84. S. Timoshenko and S. Woinowsky-Krieger, “ Theory of Plates and Shells” (New York: McGraw-Hill) 1959.
85. B. P. van Drieënhuizen, J. F. L. Goosen, P. J. French, and R. F. Wolffenbuttel, “Comparison of techniques for measuring both compressive and tensile stress in thin films,”Sensors and Actuators A, 37-38,pp.756-765,1993.
86. H. Guckel, T. Randazzo, and D. W. Burns, “A simple technique for the determination of mechanical strain in thin films with application to polysilicon,” Journal of Applied Physics, 57, pp1671-1675,1985.
87. T. Lisec, S. Hoerschelmann, H. J. Quenzer, B. Wangner, and W.Benecke,“ Thermally driven microvalve with buckling behaviour for pneumatic applications“ Proceeding of the IEEE Micro Electro Mechanical Systems, Oiso, Japan, Jan, 1997,pp19-17.
88. T. Seki, M. Sakata, T. Nakajima, and M. Matsumoto, “Thermal buckling acutator for micro relays,” The 9th Internation Conference on Solid-State Sensors and Actuators (Transducer ’97), Chicago, IL, June, 1997, pp1153-1156.
89. S. Hirata, Y. Ishii, H. Matoba, and T. Inui, “An ink-jet head using diaphragm microactuator,”Proceeding of the IEEE Micro Electro Mechanical Systems, San Diego, CA, Feb, 1996, pp418-423.
90. X. T. Huang, M.T. Saif, and N. C. MacDonald, “A micromotion amplifier,”Proceeding of the IEEE Micro Electro Mechanical Systems, San Diego, CA, Feb, 1996, pp418-423.
91. A. Ettouhami, A. Essaid, N. Ouakrim, L. Michel, and M. Limouri, “Thermal buckling of silicon capacitive pressure sensor”, Sensors and Actuators A, 57, pp.167-171, 1996.
92. T. Matsuura, M. Taguchi, K. Kawata, and K. Tsutsumi, “Deformation control of microbridges for flow sensors,”Sensors and Acturators A, 60, pp.197-201, 1997.
93. W. Fang, C.-H. Lee, and H.-H. Hu, “On the Buckling Behavior of Micromachined Beams,” Journal of Micromechanics and Microengineering, 9, pp. 236-244. 1999
94. V. G. Kutchoukov, M. Shikida, J. R. Mollinger and A. Bossche, “Through-wafer interconnect technology for silicon”, J. Micromech. Microeng., 14, pp. 1029-1036, 2004.
95. M. P. Larsson and R. R. A. Syms, “Self-aligning MEMS in-line separable electrical connecto”, Journal of MEMS, 13, pp. 365-376, 2004.
96. N. P. Pham, E. Boellaard, W. Wien, L. D. M. van den Brekel1, J.N. Burghartz, P. M. Sarro, “Metal patterning on high topography surface for 3D RF devices fabrication”, Sensors and Actuators A, 115, pp. 557-562, 2004.
97. A. Suriadi, Proc. SPIE, pp. 4404 , 2001.
98. W. S. Su, S.T. Lee, C.Y. Lin, M. S. Tsai , M. C. Yip, and W. Fang, “Tuning the Shape and Curvature of Micromachined Cantilever Using Multiple Plasma Treatments Technology”, Sensors & Actuators: A. Physical, 130-131, pp. 553-559, 2006.
99. W. S. Su, W. Fang and M. S. Tsai ,“A Novel Particle Assembly Template using Plasma Surface Modification and Self-assembly Monolayer for Nano/Micro Patterns”, Transducers 05’ (2005) 1453-1456, Seoul, Korea.
100. Y. P. Lee, M. S. Tsai, T. C. Hu, B. T. Dai, and M. S. Feng, “Selective Copper Metallization by Electrochemical Contact Displacement with Amorphous Silicon Film” , Electrochem. and Solid-State Letters, 4, pp. C47-C49 , 2001.
101. Xiaorong Xiong, Yael Hanein, Jiandong Fang, Yanbing Wang, Weihua Wang, Daniel T. Schwartz, and Karl F. Böhringer, ”Controlled Multibatch Self-Assembly of Microdevices,” Journal of Microelectromechanical Systems,12, pp.117-127, 2003.
102. Tobias Kraus, Laurent Malaquin, Emmanuel Delamarche, Heinz Schmid, Nicholas D. Spencer, and Heiko Wolf, “Closing the Gap Between Self-Assembly and Microsystems Using Self-Assembly, Transfer, and Integration of Particles,” Advanced Materials,17, pp.2438–2442, 2005.
103. Sang Hyun Park and Younan Xia, “Macroporous Membranes with Highly Ordered and Three-Dimensionally Interconnected Spherical Proes,” Advanced Materials,10, pp.1045-1048,1998.
104. Yu Lu, Yadong Yin, and Younan Xia, “A Self-Assembly Approach to the Fabrication of Patterned, Two-Dimensional Arrays of Microlenses of Organic Polymers, Advanced Materials,13, pp.34-37, 2001.
105. Yadong Yin, and Younan Xia, “Self-Assembly of Monodispersed Spherical Colloids into Complex Aggregates with Well-Defined Sizes, Shapes, and Structures,” Advanced Materials,13, pp.267-271,2001.
106. Yadong Yin, Yu Lu, Byron Gates, and Younan Xia, “Template-Assisted Self-Assembly: A Practical Route to Complex Aggregates of Monodispersed Colloids with Well-Defined Sizes, Shapes, and Structures,” Journal of American Chemical Society,123, pp.8718-8729,2001.
107. Yadong Yin, and Younan Xia, “Self-Assembly of Spherical Colloids into Helical Chains with Well-Controlled Handedness,” Journal of American Chemical Society,125, pp.2048-2049, 2003.
108. Yadong Yin, Yu Lu, and Younan Xia, “A Self-Assembly Approach to the Formation of Asymmetric Dimers from Monodispersed Spherical Colloids,” Journal of American Chemical Society, 123, pp.771-772,2001.
109. Hideo Notsu, Wakana Kubo, Isao Shitanda and Tetsu Tatsuma, “Super hydrophobic/super hydrophilic patterning of gold surfaces by photocatalytic lithography,” Journal of Maternals Chemistry, 15, pp.1523–1527, 2005.
110. T. Sato, D. G. Harsco, and H. Ahmed, ”Nanoscale colloidal particles: Monolayer organization and patterning,“ Journal of Vacuum Science Technology B, 15, pp.45-48,1997.
111. Julie D. H. Glenn ,and Edmond F. Bowden,“Diffusionless Electrochemistry of Cytochrome b5 Adsorbed on Multilayer Film Electrode,” Chemistry Letters, pp.399-400,1996.
112. Michael V. Pishko, Alexander Revzin, Aleksandr L. Simonian, “Mass Transfer in Amperometric Biosensors Based on Nanocomposite Thin Films of Redox Polymers and Oxidoreductases,” Sensors, 2, pp.79-90,2002.
113. Yueh-Lin Loo, Robert L. Willett, Kirk W. Baldwin, and John A. Rogers, ” Interfacial Chemistries for Nanoscale Transfer Printing,” Journal of American Chemical Society,124, pp.7654-7655,2002.