研究生: |
陳泳帆 Yong-Fan Chen |
---|---|
論文名稱: |
應用慢光效應對光資訊的儲存和操控 Storage and Manipulation of Photonic Information with Slow Light Effect |
指導教授: |
余怡德
Ite A. Yu |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2005 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 82 |
中文關鍵詞: | Electromagnetically Induced Transparency 、Slow light 、Photon switching by quantum interference 、Light storage and retrieval 、Laser cooling and trapping 、Cross phase modulation |
外文關鍵詞: | Electromagnetically Induced Transparency, Slow light, Photon switching by quantum interference, Light storage and retrieval, Laser cooling and trapping, Cross phase modulation |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
This thesis reports our studies on the phenomenon of electromagnetically induced transparency (EIT) and its applications including slow light effect, low-light-level photon switching, light storage and retrieval, manipulations of optical properties of stored light pulses, and a new cross-phase modulation (XPM) scheme based on light-storage technique.
EIT is the phenomenon that the absorption of a weak probe field is greatly reduced or even completely inhibited by the presence of a strong coupling field. We study the EIT effect in laser-cooled 87Rb atoms by measuring the EIT spectra. The experimental data are in agreement with the theoretical predictions. We also study the slow light effect with EIT. In our experiment, the group velocity of a light pulse can be greatly slowed down to around 1500 m/s or vg/c ~ 5×10-6 with the steep dispersion of EIT media.
Photon switching system is an important application of slow light effect. We experimentally study the transient behaviors of photon switching and provide theoretical explanations to these behaviors. We also experimentally demonstrate a single-photons-density switching. The results show that the single-photons switching is feasible and may has potential applications in quantum communication and computation.
The phenomenon of light storage and retrieval with dynamical EIT effect is based on the coherence transfer between light and collective atomic spin coherence, which can be used a quantum memory. We observe the light storage and retrieval in cold 87Rb atoms and propose a simple method of beat-note interferometer to directly demonstrate the process of light storage and retrieval is phase coherent. We also experimentally manipulate the width, frequency and polarization of retrieved light by controlling the retrieval process of light storage.
We experimentally demonstrate a new XPM scheme based on the light-storage technique. The proposed scheme can work in pulse regime and has the same figure of merit compared to the one using the static EIT under the constant coupling field. Nevertheless, the phase shift and the energy loss of a probe pulse induced by a signal pulse are neither influenced by the coupling intensity nor by the atomic optical density in the light-storage XPM scheme. This scheme enhances the flexibility of the experiment and makes possible of a single-photons π phase gate.
[1] T. H. Maiman, Phys. Rev. Lett. 4, 564 (1960).
[2] P. A. Franken et al., Phys. Rev. Lett. 7, 118 (1961).
[3] Y. R. Shen, The Principles of Nonlinear Optics, Wiley, New York, 1984.
[4] R. W. Boyd, Nonlinear Optics, Academic Press, 1992.
[5] M. O. Scully and M. S. Zubairy, Quantum Optics, Chapter 7, Cambridge University Press, 1997.
[6] 陳應誠, 博士論文「低溫原子的同調性導致現象」, 清華大學物理系 (2002).
[7] G. Alzetta et al., Nuovo Cimento Soc. Ital. Fis., B 36. 5 (1976).
[8] E. Arimondo, Prog. Opt. 35, 259 (1996).
[9] G. G. Padmabandu et al., Phys. Rev. Lett. 76, 2053 (1996).
[10] A. S. Zibrov et al., Phys. Rev. Lett. 76, 3935 (1996).
[11] S. E. Harris, J. E. Field, and A. Imamoğlu, Phys. Rev. Lett. 64, 1107 (1990).
[12] K. J. Boller, A. Imamoğlu, and S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991).
[13] S. E. Harris, Phys. Today 50, 36 (1997).
[14] S. E. Harris, Phys. Rev. Lett. 82, 4611 (1999).
[15] A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, Phys. Rev. Lett. 74, 2447 (1995).
[16] L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).
[17] M. M. Kash et al., Phys. Rev. Lett. 82, 5229 (1999).
[18] S. E. Harris and Y. Yamamoto, Phys. Rev. Lett. 81, 3611 (1998).
[19] M. Yan, E. G. Rickey, and Y. Zhu, Phys. Rev. A 64, 041801(R) (2001).
[20] D. A. Braje et al., Phys. Rev. A 68, 041801(R) (2003).
[21] Y. F. Chen, G. C. Pan, and I. A. Yu, Phys. Rev. A 69, 063801 (2004).
[22] Y. F. Chen, Z. H. Tsai, Y. C. Liu, and I. A. Yu, Opt. Lett. 23, 3207 (2005).
[23] M. Fleischhauer and M. D. Lukin, Phys. Rev. Lett. 84, 5094 (2000).
[24] C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Nature 409, 490 (2001).
[25] D. F. Phillips et al., Phys. Rev. Lett. 86, 783 (2001).
[26] 林重維, 碩士論文「黎曼能階對電磁波引發透明的影響」, 清華大學物理系 (1999).
[27] 陳韻文, 碩士論文「量子干涉非線性光譜之理論計算」, 清華大學物理系 (2000).
[28] 蘇蓉容, 碩士論文「量子干涉現象的費曼圖形分析法」, 清華大學物理系 (2001).
[29] 邱馨螢, 碩士論文「交互作用暗共振之理論分析」, 清華大學物理系 (2002).
[30] C. G. B. Garret and D. E. McCumber, Phys. Rev. A 1, 305 (1970).
[31] S. Chu and S. Wong, Phys. Rev. Lett. 48, 738 (1982).
[32] R. Y. Chiao et al, in Progress in Optics 37, 347-406, E. Wolf, Ed., Elsevier, Amsterdam (1997).
[33] M. D. Lukin, Rev. Mod. Phys. 75, 457 (2003).
[34] M. Fleischhauer, Rev. Mod. Phys. 77, 633 (2005).
[35] H. Schmidt and A. Imamoğlu, Opt. Lett. 21, 1936 (1996).
[36] H. Kang and Y. Zhu, Phys. Rev. Lett. 91, 093601 (2003).
[37] S. E. Harris, J. E. Field, and A. Kasapi, Phys. Rev. A 46, R29 (1992).
[38] M. Xiao et al., Phys. Rev. Lett. 74, 666 (1995).
[39] J. J. Longdell et al., Phys. Rev. Lett. 95, 063601 (2005).
[40] A. K. Patnaik, J. Q. Lian, and K. Hakuta, Phys. Rev. A 66, 063808 (2002).
[41] T. Hänsch and A. Schawlow, Opt. Comm. 13, 68 (1975).
[42] D. Wineland and H. Dehmelt, Bull. Am. Phys. Soc. 20, 637 (1975).
[43] A. Ashkin, Phys. Rev. Lett. 40, 729 (1978).
[44] D. Wineland, R. Drullinger, and F. Walls, Phys. Rev. Lett. 40, 1639 (1978).
[45] D. Wineland and W. Itano, Phys. Rev. A 20, 1521 (1979).
[46] A. Migdall et al., Phys. Rev. Lett. 54, 2595 (1985).
[47] S. Chu, J. Bjorkholm, A. Ashkin, and A. Cable, Phys. Rev. Lett. 57, 314 (1986).
[48] E. L. Raab et al., Phys. Rev. Lett. 59, 2631 (1987).
[49] M. H. Anderson et al., Science 269, 198 (1995).
[50] K. B. Davis et al., Phys. Rev. Lett. 75, 3969 (1995).
[51] C. C. Bradley et al., Phys. Rev. Lett. 75, 1687 (1995).
[52] J. Weiner et al., Rev. Mod. Phys. 71, 1 (1999).
[53] M. A. Kasevich, E. Riis, and S. Chu, Phys. Rev. Lett. 63, 612 (1995).
[54] K. Gibble and S. Chu, Phys. Rev. Lett. 70, 1771 (1993).
[55] J. Ye, S. Swartz, P. Jungner, and J. Hall, Opt. Lett. 21, 1280 (1996).
[56] G. Barwood, P. Gill, and W. Rowley, Appl. Phys. B. 53, 142 (1991).
[57] S. Bize et al., Europhys. Lett. 45, 558 (1999).
[58] J. Vanier et al., The Quantum Physics of Atomic Frequency Standards, Adam Hilger, 1989.
[59] R. W. Boyd and D. J. Gauthier, in Progress in Optics 43, 497-530, E. Wolf, Ed., Elsevier, Amsterdam (2002).
[60] Y. C. Chen, Y. A. Liao, L. Hsu, and I. A. Yu, Phys. Rev. A 64, 031401(R) (2001).
[61] 劉昱辰, 碩士論文「利用MOPA雷射系統建立的磁光陷阱」, 清華大學物理系 (2004).
[62] 蔡仁祥, 碩士論文「加長與壓縮對磁光陷阱的影饗」, 清華大學物理系 (2004).
[63] Y. F. Chen, G. C. Pan, and I. A. Yu, J. Opt. Soc. Am. B 21, 1647 (2004).
[64] S. E. Harris and L. V. Hau, Phys. Rev. Lett. 82, 4611 (1999).
[65] M. Xiao, H. Wang, and D. Goorskey, Optics & Photonic News, 44-48 (2002).
[66] M. D. Lukin and A. Imamoğlu, Phys. Rev. Lett. 84, 1419 (2000).
[67] Y. C. Chen, C. W. Lin, and I. A. Yu, Phys. Rev. A 61, 053805 (2000).
[68] Y. C. Chen, Y. W. Chen, J. J. Su, J. Y. Huang, and I. A. Yu, Phys. Rev. A 63, 043808 (2001).
[69] G. C. Pan and I. A. Yu, Chin. J. Phys. (Taipei) 41, 503 (2003).
[70] 潘冠錡, 碩士論文「量子干涉現象的時域分析」, 清華大學物理系 (2003).
[71] L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Nature 414, 413 (2001).
[72] M. D. Lukin, S. F. Yelin, and M. Fleischhauer, Phys. Rev. Lett. 84, 4232 (2000).
[73] O. Kocharovskaya et al., Phys. Rev. Lett. 86, 628 (2001).
[74] A. Mair et al., Phys. Rev. A 65, 031802(R) (2002).
[75] Y. F. Chen, Y. C. Liu, Z. H. Tsai, S. H. Wang, and I. A. Yu, Phys. Rev. A 72, 033812 (2005).
[76] C. H. van der Wal et al., Science 301, 196 (2003).
[77] A. Kuzmich et al., Nature 423, 731 (2003).
[78] M. D. Eisaman et al., Phys. Rev. Lett. 93, 233602 (2004).
[79] M. D. Eisaman et al., Nature 438, 837 (2005).
[80] T. Chanelière et al., Nature 438, 833 (2005).
[81] Q. A. Turchette et al., Phys. Rev. Lett. 75, 4710 (1995).
[82] C. Ottaviani et al., Phys. Rev. Lett. 90, 197902 (2003).
[83] M. S. Zubairy, M. Kim, and M. O. Scully, Phys. Rev. A 68, 033820 (2003).
[84] H. X. Chen et al., Phys. Rev. A 58, 1545 (1998).
[85] P. Valente, H. Failache, and A. Lezama, Phys. Rev. A 67, 013806 (2003).
[86] W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, Phys. Rev. Lett. 81, 3563 (1998).
[87] M. D. Lukin and A. Imamoğlu, Nature 413, 273 (2001).
[88] A. S. Zibrov et al., Phys. Rev. Lett. 88, 103601 (2002).
[89] A. Raczyński and J. Zaremba, Opt. Commun. 209, 149 (2002).
[90] A. Raczyński et al., Opt. Commun. 217, 275 (2003).
[91] A. K. Patnaik, F. L. Kien, and K. Hakuta, Phys. Rev. A 69, 035803 (2004).
[92] M. S. Bigglow et al., Phys. Rev. Lett. 90, 113903 (2003).
[93] Y. Okawachi et al., Phys. Rev. Lett. 94, 153902 (2005).
[94] Y. F. Chen, S. H. Wang, C. Y. Wang, and I. A. Yu, Phys. Rev. A 72, 053803 (2005).
[95] A. S. Zibrov et al., Phys. Rev. Lett. 88, 103601 (2002).
[96] A. B. Matsko et al., Phys. Rev. A 64, 043809 (2001).
[97] B. Wang et al., Phys. Rev. A 72, 043801 (2005).
[98] Y. F. Chen, C. Y. Wang, S. H. Wang, and I. A. Yu, to be published in Phys. Rev. Lett. (2006).
[99] Y. F. Chen, P. C. Kuan, S. H. Wang, C. Y. Wang, and I. A. Yu, submitted for publication.
[100] J. P. Poizat and P. Grangier, Phys. Rev. Lett. 70, 271 (1993).
[101] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Chapter 7, Cambridge University Press, 2000.