研究生: |
藍智嵩 Lan,Chih-Sung |
---|---|
論文名稱: |
核能熱化學產氫–碘硫循環:利用直接接觸薄膜蒸餾來濃縮氫碘酸 |
指導教授: |
潘欽
Pan,Chin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2008 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 97 |
中文關鍵詞: | 產氫 、熱化學水分解 、碘硫循環 、氫碘酸 、共沸分離 、薄膜蒸餾 |
外文關鍵詞: | Hydrogen production, Thermochemical water splitting, Sulfur-iodine cycle, Hydriodic acid, Azeotropic separation, Membrane distillation |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用核能熱源進行熱化學產氫,碘硫循環被認為是最可行的方法之一。由於碘硫循環具有些許缺點,使得實際操作的效率低於理想計算的效率。其中之一即為氫碘酸分解程序,尤其在氫碘酸濃縮部分。由於氫碘酸溶液(HI / H2O)會有共沸現象,以致傳統蒸餾不能純化分離氫碘酸,使得整體效率降低。雖然目前的解決技術有:萃取蒸餾、反應蒸餾、電滲析法、電化電池與滲透蒸發,以上技術皆有各自的缺點,不外乎是耗能不低與設備複雜。
薄膜蒸餾為具有成本效益的新興分離方法,可以利用低階的廢熱、替代能源(譬如太陽能、地熱)或是核能廢熱來作為能量來源,是一種具有極高效益的方法。本研究即以直接接觸薄膜蒸餾來濃縮氫碘酸,並探討不同操作條件對濃縮成效的影響,另外也建構數學模型以了解參數間影響,甚至在未來可作進一步模擬探討。
若在直接接觸薄膜蒸餾滲透端只通入純水,結果顯示此方法只能濃縮低濃度的氫碘酸;在高濃度氫碘酸下,不僅不能提升濃度,甚至發現有水蒸氣逆流,導致稀釋。然而,如果在滲透端改成通入氫碘酸溶液,以增加水蒸氣分壓差和降低氫碘酸分壓差,在滲透端為6.5 M、溫差為50.31℃,以及滲透端為7.5 M、溫差為30.16、50.12 ℃這三個操作點下,氫碘酸溶液皆可以成功越過共沸點,因此,薄膜蒸餾確實可提供碘硫循環一個低成本、設備簡單以及操作容易的新流程選擇。
[1] Hsu F. S., 2005, "The Energy Problem at a Glance," Preface of World Will be More Beautiful with Nuclear Power, by M. Lee and T. R. Liang, Nuclear Association of R. O. C.
[2] X. Vitart, P. CARLES, A. L. Duigou, Thermochemical Production of Hydrogen Using Nuclear Heat:a Survey of Technical and Economical Issues. Proceedings of GLOBAL 2005. Tsukuba, Japan; 2005.
[3] 顧忠茂, 氫能利用與核能制氫研究開發綜述, 原子能科學技術, 40 (2006) 30-35.
[4] 張平, 于波, 陳靖, 徐景明, 熱化學循環分解水制氫研究進展, 化學進展, 17 (2005) 643-650.
[5] J.H. Norman, G.E. Besenbruch, L.C. Brown, D.R. O’Keefe and C.L. Allen, Thermochemical water-splitting cycle, Bench-scale investigations and process engineering, General Atomics Report (1982) GA-A16713.
[6] K.F. Knoche, H. Schepers and K. Hesselmann, Second law and cost analysis of the oxygen generation step of the general atomic sulfur-iodine cycle, Proceedings of the fifth world hydrogen energy conference, Toronto, Canada; July 15-20, (1984) 487-502.
[7] I.T. Ozturk, A. Hammache and E. Bilgen, A new process for oxygen generation step for the hydrogen producing sulfur-iodine thermochemical cycle, Trans. I. Chem. E. 72 (Part A) (1994) 241-250.
[8] M. Roth and K.F. Knoche, Thermochemical water-splitting through direct HI decomposition from H2O/HI/I2 solutions, Int. J. Hydrogen Ener. 14 (1989) 545-549.
[9] S. Kasahara, G.J. Hwang, H. Nakajima, H.S. Choi, K. Onuki and M. Nomura, Effects of process parameters of the IS process on total thermal efficiency to produce hydrogen from water, J. Chem. Eng. Jpn. 36 (2003) 887-899.
[10]S. Kubo, S. Kasahara, H. Okuda, A. Terada, N. Tanaka, Y. Inaba, H. Ohashi, Y. Inagaki, K. Onuki and R. Hino, A pilot test plan of the thermochemical water-splitting iodine-sulfur process, Nucl. Eng. Des. 233 (2004) 355-362.
[11]S. Kasahara, S. Kubo, K. Onuki and M. Nomura, Thermal efficiency evaluation of HI synthesis/concentration procedures in the thermochemical water splitting IS process, Int. J. Hydrogen Ener. 29 (2004) 579-587.
[12]M. Nomura, S. Kasahara, H. Okuda and S.I. Nakao, Evaluation of the IS process featuring membrane techniques by total thermal efficiency, Int. J. Hydrogen Ener. 30 (2005) 1465-1473.
[13]S. Goldstein, J.M. Borgard and X. Vitart, Upper bound and best estimate of the efficiency of the iodine sulphur cycle, Int. J. Hydrogen Ener. 30 (2005) 619-626.
[14]L.C. Brown, J.F. Funk and S.K. Showalter, High efficiency generation of hydrogen fuels using nuclear power, General Atomics Report (2003) GA-A23373.
[15]R.H. Elder, G.H. Priestman, B.C. Ewan and R.W.K. Allen, The separation of HIx in the sulphur-iodine thermochemical cycle for sustainable hydrogen production, Trans. IChemE, Part B, Process Safety Environ. Prot. 83 (2005) 343-350.
[16]A.L. Duigou, J.M. Borgard, B. Larousse, D. Doizi, R. Allen, B.C. Ewan, G.H. Priestman, R. Elder, R. Devonshire, V. Ramos, G. Cerri, C. Salvini, A. Giovannelli, G.D. Maria, C. Corgnale, S. Brutti, M. Roeb, A. Noglik, P.M. Rietbrock, S. Mohr, L.D. Oliveira, N. Monnerie, M. Schmitz, C. Sattler, A.O. Martinez, D.D.L. Manzano, J.C. Rojas, S. Dechelotte and O. Baudouin, HYTHEC: An EC funded search for a long term massive hydrogen production route using solar and nuclear technologies, Int. J. Hydrogen Ener. 32 (2007) 1516-1529.
[17]S. Kasahara, S. Kubo, R. Hino, K. Onuki, M. Nomura and S.I. Nakao, Flowsheet study of the thermochemical water-splitting iodine-sulfur process for effective hydrogen production, Int. J. Hydrogen Ener. 32 (2007) 489-496.
[18]N. Sakaba, S. Kasahara, K. Onuki and K. Kunitomi, Conceptual design of hydrogen production system with thermochemical water-splitting iodine-sulphur process utilizing heat from the high-temperature gas-cooled reactor HTTR, Int. J. Hydrogen Ener. 32 (2007) 4160-4169.
[19]M. Nomura, S. Fujiwara, K. Ikenoya, S. Kasahara, H. Nakajima, S. Kubo, G.J. Hwang, H.S. Choi and K. Onuki, Application of an electrochemical membrane reactor to the thermochemical water splitting IS process for hydrogen production, J. Membr. Sci. 240 (2004) 221-226.
[20]M. Nomura, S.I. Nakao, H. Okuda, S. Fujiwara, S. Kasahara, K. Ikenoya, S. Kubo and K. Onuki, Development of an Electrochemical cell for efficient hydrogen production through the IS process, AIChE J. 50 (2004) 1991-1998.
[21]M. Nomura, H. Okuda, S. Kasahara and S.I. Nakao, Optimization of the process parameters of an electrochemical cell in the IS process, Chem. Eng. Sci. 60 (2005) 7160-7167.
[22]J.H. Norman, G.E. Besenbruch, L.C. Brown, D.R. O’Keefe and C.L. Allen, Thermochemical water splitting cycle, Bench scale investigations and process engineering, DOE/ET/26225, 1981.
[23]C. Berdhauser and K.F. Knoche, Experimental investigations of thermal HI decomposition from H2O-HI-I2 solutions, Int. J. Hydrogen Ener. 19 (1994) 239-244.
[24]J. Borgard, S. Colette, A.L. Duigou and S. Goldstein, 2003, in 1st European Hydrogen Energy Conference, Grenoble.
[25]K. Onuki, G.J. Hwane and S. Shimizu, Electrodialysis of hydriodic acid in the presence of iodine, J. Membr. Sci. 175 (2000) 171-179.
[26]K. Onuki, G.J. Hwang, Arifal and S. Shimizu, Electro-electrodialysis of hydriodic acid in the presence of iodine at elevated temperature, J. Membr. Sci.192 ( 2001) 193-199.
[27]G.J. Hwang, K. Onuki, M. Nomura, S. Kasahara and J.W. Kim, Improvement of the thermochemical water-splitting IS (iodine-sulfur) process by electro-electrodialysis. J. Membr. Sci. 220 (2003) 129-136.
[28]F.F. Stewart, C.J. Orme and M.G. Jones, Membrane processes for the sulfur-iodine thermochemical cycle, Int. J. Hydrogen Ener. 32 (2007) 457-462.
[29]C.J. Orme, M.G. Jones and F.F. Stewart, Pervaporation of water from aqueous HI using Nafion((R))-117 membranes for the sulfur-iodine thermochemical water splitting process, J. Membr. Sci. 252 (2005) 245-252.
[30]G.J. Hwang, K. Onuki and S. Shimizu, Separation of hydrogen from a H2-H2O-HI gaseous mixture using a silica membrane, AIChE J. 46 (2000) 92-98.
[31]G.J. Hwang and K. Onuki, Simulation study on the catalytic decomposition of hydrogen iodide in a membrane reactor with a silica membrane for the thermochemical water-splitting IS process, J. Membr. Sci. 194 (2001) 207-215.
[32]王學松, 膜分離技術及其應用, 北京市: 科學出版社, 1994.
[33]K. Smolders and A.C.M. Franken, Terminology of membrane distillation , Desalination. 72 (1989) 249-262.
[34]A.B. Fawzi and J. Simandl, Desalination by membrane distillation: a parametric study, Sep. Sci. Tech. 33 (1998) 201-226.
[35]K.W. Lawson and D.R. Lloyd, Review membrane distillation, J. Membr. Sci. 124 (1997) 1-25.
[36]K.W. Lawson and D.R. Lloyd, Membrane distillation. II. Direct contact MD, J. Membr. Sci. 120 (1996) 123-133.
[37]A. Burgoyne and M.M. Vahdati, Review direct contact membrane distillation, Sep. Sci. Tech. 35 (2000) 1257-1284.
[38]A.B. Fawzi andJ. Simandl, Theoretical and experimental study in membrane distillation, Desalination. 95 (1994) 39-52.
[39]U.V. Stockar, C.A. Rivier, M.C. Garcia-Payo and I.W. Marison, Separation of binary mixtures by thermostatic sweeping gas membrane distillation I. Theory and simulations, J. Membr. Sci. 201 (2002) 1-16.
[40]K.W. Lawson and D.R. Lloyd, Membrane distillation. I. Module design and performance evaluation vacuum membrane distillation, J. Membr. Sci. 120 (1996) 111-121.
[41]C. Cabassud and D. Wirth, Membrane distillation for water desalination: how to choose an appropriate membrane?, Desalination. 157 (2003) 307-314.
[42]A.M. Alklaibi and N. Lior, Membrane-distillation desalination: status and potential, Desalination. 171 (2004) 111-131.
[43]M.S. El-Bourawi, Z. Ding, R. Ma and M. Khayet, A framework for better understanding membrane distillation separation process, J. Membr. Sci. 285 (2006) 4-29.
[44]M.E. Findley, Vaporization through porous membranes, Industrial & engineering chemistry process design and development, 6 (1967) 226-230.
[45]H. Udriot, A. Araque and U. Vonstockar, Azeotropic mixtures may be broken by membrane distillation, Chemical Engineering Journal and the Biochemical Engineering Journal, 54 (1994) 87-93.
[46]M. Tomaszewska, M. Gryta and A.W. Morawski, Study on the concentration of acids by membrane distillation, J. Membr. Sci. 102 (1995) 113-122.
[47]F.A. Banat, F. Abu Al-Rub, R. Jumah and M. Shannag, Theoretical investigation of membrane distillation role in breaking the formic acid-water azeotropic point: Comparison between Fickian and Stefan-Maxwell-based models, International Communications in Heat and Mass Transfer, 26 (1999) 879-888.
[48]F.A. Banat, F. Abu Al-Rub, R. Jumah and M. Shannag, On the effect of inert gases in breaking the formic acid-water azeotrope by gas-gap membrane distillation, Chemical Engineering Journal, 73 (1999) 37-42.
[49]M. Tomaszewska, M. Gryta and A.W. Morawski, Mass transfer of HCl and H2O across the hydrophobic membrane during membrane distillation, J. Membr. Sci. 166 (2000) 149-157.
[50]M. Tomaszewska, M. Gryta and A.W. Morawski, Recovery of hydrochloric acid from metal pickling solutions by membrane distillation, Separation and Purification Technology, 22-3 (2001) 591-600.
[51]M. Khayet, A. Velazquez and J.I. Mengual, Direct contact membrane distillation of humic acid solutions, J. Membr. Sci. 240 (2004) 123-128.
[52]R. Datta, S. Dechapanichkul, J.S. Kim, L.Y. Fang and H. Uehara, A generalized model for transport of gases in porous, non-porous, and leaky membranes. I. Application to single gases, J. Membr. Sci. 75 (1992) 245-263.
[53]R.W. Schofield, A.G. Fane and C.J.D. Fell, Gas and vapour transport through microporous membrane. I. Knudsen-poiseuille transition, J. Membr. Sci. 53 (1990) 159-171.
[54]C.O. Popiel and J. Wojtkowiak, Simple formulas for thermophysical properties of liquid water for heat transfer calculations (from 0℃ to 150℃), Heat Transfer Engineering, 19 (1998) 87-101.
[55]G.M. Barrow, Physical Chemistry, 2nd edn., McGraw-Hill, New York, N.Y., 1966.
[56]R.B. Bird, W.E. Stewart and E.N. Lightfoot, Transport Phenomena, Wiley, New York, 2002, 2nd edn.
[57]J. Phattaranawik, R. Jiraratananon and A.G. Fane, Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation, J. Membr. Sci. 215 (2003) 75-85.
[58] R.A. Albert and R.J. Silbey, Physical Chemistry, 3nd ed., Wiley, New York, 2001.
[59]B. E. Poling, J. M. Prausnitz and J. P. O’connell, The Properties of Gases and liquids, McGraw-Hill, New York, 2001, 5nd edn.
[60]R.W. Schofield, A.G. Fane and C.J.D. Fell, Gas and vapour transport through microporous membrane. II. Membrane distillation, J. Membr. Sci. 53 (1990) 173-185.
[61]M. Tomaszewska, M. Gryta and A.W. Morawski, A study of separation by the direct contact membrane distillation process, Sep. Technol. 4 (1994) 244-248.
[62]Z. Ding, R. Ma and A.G. Fane, A new model for mass transfer in direct contact membrane distillation, Desalination. 151 (2002) 217-227.
[63]R. Krishna, A simplified procedure for the solution of the dusty gas model equations for steady-state transport in nonreacting systems, Chem. Eng. J. 35 (1987) 75-81.
[64]E.N. Fuller, K. Ensley and J.C. Giddings, A New Method for Prediction of Binary Gas-Phase Diffusion Coefficients, Ind. Eng. Chem., 58 (1966) 19–27.
[65]E.N. Fuller, P.D. Schettler and J.C. Giddings, Diffusion of Halogenated Hydrocarbons in Helium. The Effect of Structure on Collision Cross sections, J. Phys. Chem., 73 (1969) 3679–3685.
[66]R. Jackon, in S.W. Churchill (Ed.), Transport in Porous Catalysts, Elsevier, New York, 1977.
[67]J. Phattaranawik and R. Jiraratananon, Direct contact membrane distillation: effect of mass transfer on heat transfer, J. Membr. Sci. 188 (2001) 137-143.
[68]J. Phattaranawik, R. Jiraratananon and A.G. Fane, Heat transport and membrane distillation coefficients in direct contact membrane distillation, J. Membr. Sci. 212 (2003) 177-193.