簡易檢索 / 詳目顯示

研究生: 藍智嵩
Lan,Chih-Sung
論文名稱: 核能熱化學產氫–碘硫循環:利用直接接觸薄膜蒸餾來濃縮氫碘酸
指導教授: 潘欽
Pan,Chin
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2008
畢業學年度: 97
語文別: 中文
論文頁數: 97
中文關鍵詞: 產氫熱化學水分解碘硫循環氫碘酸共沸分離薄膜蒸餾
外文關鍵詞: Hydrogen production, Thermochemical water splitting, Sulfur-iodine cycle, Hydriodic acid, Azeotropic separation, Membrane distillation
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用核能熱源進行熱化學產氫,碘硫循環被認為是最可行的方法之一。由於碘硫循環具有些許缺點,使得實際操作的效率低於理想計算的效率。其中之一即為氫碘酸分解程序,尤其在氫碘酸濃縮部分。由於氫碘酸溶液(HI / H2O)會有共沸現象,以致傳統蒸餾不能純化分離氫碘酸,使得整體效率降低。雖然目前的解決技術有:萃取蒸餾、反應蒸餾、電滲析法、電化電池與滲透蒸發,以上技術皆有各自的缺點,不外乎是耗能不低與設備複雜。
    薄膜蒸餾為具有成本效益的新興分離方法,可以利用低階的廢熱、替代能源(譬如太陽能、地熱)或是核能廢熱來作為能量來源,是一種具有極高效益的方法。本研究即以直接接觸薄膜蒸餾來濃縮氫碘酸,並探討不同操作條件對濃縮成效的影響,另外也建構數學模型以了解參數間影響,甚至在未來可作進一步模擬探討。
    若在直接接觸薄膜蒸餾滲透端只通入純水,結果顯示此方法只能濃縮低濃度的氫碘酸;在高濃度氫碘酸下,不僅不能提升濃度,甚至發現有水蒸氣逆流,導致稀釋。然而,如果在滲透端改成通入氫碘酸溶液,以增加水蒸氣分壓差和降低氫碘酸分壓差,在滲透端為6.5 M、溫差為50.31℃,以及滲透端為7.5 M、溫差為30.16、50.12 ℃這三個操作點下,氫碘酸溶液皆可以成功越過共沸點,因此,薄膜蒸餾確實可提供碘硫循環一個低成本、設備簡單以及操作容易的新流程選擇。


    摘要 ……………………………………………………………… I 誌謝 ……………………………………………………………… III 目錄 ……………………………………………………………… IV 圖目錄 …………………………………………………………… VII 表目錄 …………………………………………………………… IX 符號說明 ………………………………………………………… X 第一章 緒論 ……………………………………………………… 1 1.1 研究背景 …………………………………………………… 1 1.2 研究動機與目的 …………………………………………… 6 1.3 本文架構 …………………………………………………… 7 第二章 文獻回顧 ………………………………………………… 9 2.1 整體效率 …………………………………………………… 9 2.2 目前技術議題及解決方案 ………………………………… 13 2.2.1 邦生反應程序 ……………………………………… 13 2.2.2 硫酸分解程序 ……………………………………… 14 2.2.3 氫碘酸分解程序 …………………………………… 14 2.2.4 其他部分 …………………………………………… 17 2.3 薄膜蒸餾 …………………………………………………… 19 2.3.1 薄膜蒸餾概述 ……………………………………… 20 2.3.2 薄膜蒸餾的優點 …………………………………… 23 2.3.3 薄膜蒸餾的種類 …………………………………… 25 2.3.4 薄膜蒸餾用於濃縮酸溶液 ………………………… 30 第三章 理論分析 ………………………………………………… 33 3.1 質量傳輸機制 ……………………………………………… 33 3.1.1 Knudsen 擴散模式 ………………………………… 34 3.1.2 Poiseuille 模式(黏性流) ……………………… 37 3.1.3 分子擴散模式 ……………………………………… 38 3.1.4 過渡區模式 ………………………………………… 39 3.1.4.1 Schofield’s 模式 ……………………… 42 3.1.4.2 Tomazszewska’s 模式 ………………… 43 3.1.4.3 KMPT 模式 ……………………………… 44 3.1.4.4 塵氣模式(Dusty Gas model,DGM)… 45 3.2 直接接觸薄膜蒸餾輸送原理 ……………………………… 49 3.2.1 熱量傳輸機制 ……………………………………… 50 第四章 實驗設備與步驟 ………………………………………… 56 4.1 實驗系統環路 ……………………………………………… 56 4.2 實驗儀器與材料 …………………………………………… 60 4.3 實驗方法 …………………………………………………… 61 4.4 實驗步驟 …………………………………………………… 62 4.5 實驗注意事項 ……………………………………………… 64 第五章 結果與討論 ……………………………………………… 66 5.1 純水測試 …………………………………………………… 66 5.2 氫碘酸實驗 ………………………………………………… 70 5.3 氫碘酸實驗改良 …………………………………………… 77 第六章 結論與建議 ……………………………………………… 86 6.1 結論 ………………………………………………………… 86 6.2 未來研究建議 ……………………………………………… 88 參考文獻 ………………………………………………………… 90

    [1] Hsu F. S., 2005, "The Energy Problem at a Glance," Preface of World Will be More Beautiful with Nuclear Power, by M. Lee and T. R. Liang, Nuclear Association of R. O. C.
    [2] X. Vitart, P. CARLES, A. L. Duigou, Thermochemical Production of Hydrogen Using Nuclear Heat:a Survey of Technical and Economical Issues. Proceedings of GLOBAL 2005. Tsukuba, Japan; 2005.
    [3] 顧忠茂, 氫能利用與核能制氫研究開發綜述, 原子能科學技術, 40 (2006) 30-35.
    [4] 張平, 于波, 陳靖, 徐景明, 熱化學循環分解水制氫研究進展, 化學進展, 17 (2005) 643-650.
    [5] J.H. Norman, G.E. Besenbruch, L.C. Brown, D.R. O’Keefe and C.L. Allen, Thermochemical water-splitting cycle, Bench-scale investigations and process engineering, General Atomics Report (1982) GA-A16713.
    [6] K.F. Knoche, H. Schepers and K. Hesselmann, Second law and cost analysis of the oxygen generation step of the general atomic sulfur-iodine cycle, Proceedings of the fifth world hydrogen energy conference, Toronto, Canada; July 15-20, (1984) 487-502.
    [7] I.T. Ozturk, A. Hammache and E. Bilgen, A new process for oxygen generation step for the hydrogen producing sulfur-iodine thermochemical cycle, Trans. I. Chem. E. 72 (Part A) (1994) 241-250.
    [8] M. Roth and K.F. Knoche, Thermochemical water-splitting through direct HI decomposition from H2O/HI/I2 solutions, Int. J. Hydrogen Ener. 14 (1989) 545-549.
    [9] S. Kasahara, G.J. Hwang, H. Nakajima, H.S. Choi, K. Onuki and M. Nomura, Effects of process parameters of the IS process on total thermal efficiency to produce hydrogen from water, J. Chem. Eng. Jpn. 36 (2003) 887-899.
    [10]S. Kubo, S. Kasahara, H. Okuda, A. Terada, N. Tanaka, Y. Inaba, H. Ohashi, Y. Inagaki, K. Onuki and R. Hino, A pilot test plan of the thermochemical water-splitting iodine-sulfur process, Nucl. Eng. Des. 233 (2004) 355-362.
    [11]S. Kasahara, S. Kubo, K. Onuki and M. Nomura, Thermal efficiency evaluation of HI synthesis/concentration procedures in the thermochemical water splitting IS process, Int. J. Hydrogen Ener. 29 (2004) 579-587.
    [12]M. Nomura, S. Kasahara, H. Okuda and S.I. Nakao, Evaluation of the IS process featuring membrane techniques by total thermal efficiency, Int. J. Hydrogen Ener. 30 (2005) 1465-1473.
    [13]S. Goldstein, J.M. Borgard and X. Vitart, Upper bound and best estimate of the efficiency of the iodine sulphur cycle, Int. J. Hydrogen Ener. 30 (2005) 619-626.
    [14]L.C. Brown, J.F. Funk and S.K. Showalter, High efficiency generation of hydrogen fuels using nuclear power, General Atomics Report (2003) GA-A23373.
    [15]R.H. Elder, G.H. Priestman, B.C. Ewan and R.W.K. Allen, The separation of HIx in the sulphur-iodine thermochemical cycle for sustainable hydrogen production, Trans. IChemE, Part B, Process Safety Environ. Prot. 83 (2005) 343-350.
    [16]A.L. Duigou, J.M. Borgard, B. Larousse, D. Doizi, R. Allen, B.C. Ewan, G.H. Priestman, R. Elder, R. Devonshire, V. Ramos, G. Cerri, C. Salvini, A. Giovannelli, G.D. Maria, C. Corgnale, S. Brutti, M. Roeb, A. Noglik, P.M. Rietbrock, S. Mohr, L.D. Oliveira, N. Monnerie, M. Schmitz, C. Sattler, A.O. Martinez, D.D.L. Manzano, J.C. Rojas, S. Dechelotte and O. Baudouin, HYTHEC: An EC funded search for a long term massive hydrogen production route using solar and nuclear technologies, Int. J. Hydrogen Ener. 32 (2007) 1516-1529.
    [17]S. Kasahara, S. Kubo, R. Hino, K. Onuki, M. Nomura and S.I. Nakao, Flowsheet study of the thermochemical water-splitting iodine-sulfur process for effective hydrogen production, Int. J. Hydrogen Ener. 32 (2007) 489-496.
    [18]N. Sakaba, S. Kasahara, K. Onuki and K. Kunitomi, Conceptual design of hydrogen production system with thermochemical water-splitting iodine-sulphur process utilizing heat from the high-temperature gas-cooled reactor HTTR, Int. J. Hydrogen Ener. 32 (2007) 4160-4169.
    [19]M. Nomura, S. Fujiwara, K. Ikenoya, S. Kasahara, H. Nakajima, S. Kubo, G.J. Hwang, H.S. Choi and K. Onuki, Application of an electrochemical membrane reactor to the thermochemical water splitting IS process for hydrogen production, J. Membr. Sci. 240 (2004) 221-226.
    [20]M. Nomura, S.I. Nakao, H. Okuda, S. Fujiwara, S. Kasahara, K. Ikenoya, S. Kubo and K. Onuki, Development of an Electrochemical cell for efficient hydrogen production through the IS process, AIChE J. 50 (2004) 1991-1998.
    [21]M. Nomura, H. Okuda, S. Kasahara and S.I. Nakao, Optimization of the process parameters of an electrochemical cell in the IS process, Chem. Eng. Sci. 60 (2005) 7160-7167.
    [22]J.H. Norman, G.E. Besenbruch, L.C. Brown, D.R. O’Keefe and C.L. Allen, Thermochemical water splitting cycle, Bench scale investigations and process engineering, DOE/ET/26225, 1981.
    [23]C. Berdhauser and K.F. Knoche, Experimental investigations of thermal HI decomposition from H2O-HI-I2 solutions, Int. J. Hydrogen Ener. 19 (1994) 239-244.
    [24]J. Borgard, S. Colette, A.L. Duigou and S. Goldstein, 2003, in 1st European Hydrogen Energy Conference, Grenoble.
    [25]K. Onuki, G.J. Hwane and S. Shimizu, Electrodialysis of hydriodic acid in the presence of iodine, J. Membr. Sci. 175 (2000) 171-179.
    [26]K. Onuki, G.J. Hwang, Arifal and S. Shimizu, Electro-electrodialysis of hydriodic acid in the presence of iodine at elevated temperature, J. Membr. Sci.192 ( 2001) 193-199.
    [27]G.J. Hwang, K. Onuki, M. Nomura, S. Kasahara and J.W. Kim, Improvement of the thermochemical water-splitting IS (iodine-sulfur) process by electro-electrodialysis. J. Membr. Sci. 220 (2003) 129-136.
    [28]F.F. Stewart, C.J. Orme and M.G. Jones, Membrane processes for the sulfur-iodine thermochemical cycle, Int. J. Hydrogen Ener. 32 (2007) 457-462.
    [29]C.J. Orme, M.G. Jones and F.F. Stewart, Pervaporation of water from aqueous HI using Nafion((R))-117 membranes for the sulfur-iodine thermochemical water splitting process, J. Membr. Sci. 252 (2005) 245-252.
    [30]G.J. Hwang, K. Onuki and S. Shimizu, Separation of hydrogen from a H2-H2O-HI gaseous mixture using a silica membrane, AIChE J. 46 (2000) 92-98.
    [31]G.J. Hwang and K. Onuki, Simulation study on the catalytic decomposition of hydrogen iodide in a membrane reactor with a silica membrane for the thermochemical water-splitting IS process, J. Membr. Sci. 194 (2001) 207-215.
    [32]王學松, 膜分離技術及其應用, 北京市: 科學出版社, 1994.
    [33]K. Smolders and A.C.M. Franken, Terminology of membrane distillation , Desalination. 72 (1989) 249-262.
    [34]A.B. Fawzi and J. Simandl, Desalination by membrane distillation: a parametric study, Sep. Sci. Tech. 33 (1998) 201-226.
    [35]K.W. Lawson and D.R. Lloyd, Review membrane distillation, J. Membr. Sci. 124 (1997) 1-25.
    [36]K.W. Lawson and D.R. Lloyd, Membrane distillation. II. Direct contact MD, J. Membr. Sci. 120 (1996) 123-133.
    [37]A. Burgoyne and M.M. Vahdati, Review direct contact membrane distillation, Sep. Sci. Tech. 35 (2000) 1257-1284.
    [38]A.B. Fawzi andJ. Simandl, Theoretical and experimental study in membrane distillation, Desalination. 95 (1994) 39-52.
    [39]U.V. Stockar, C.A. Rivier, M.C. Garcia-Payo and I.W. Marison, Separation of binary mixtures by thermostatic sweeping gas membrane distillation I. Theory and simulations, J. Membr. Sci. 201 (2002) 1-16.
    [40]K.W. Lawson and D.R. Lloyd, Membrane distillation. I. Module design and performance evaluation vacuum membrane distillation, J. Membr. Sci. 120 (1996) 111-121.
    [41]C. Cabassud and D. Wirth, Membrane distillation for water desalination: how to choose an appropriate membrane?, Desalination. 157 (2003) 307-314.
    [42]A.M. Alklaibi and N. Lior, Membrane-distillation desalination: status and potential, Desalination. 171 (2004) 111-131.
    [43]M.S. El-Bourawi, Z. Ding, R. Ma and M. Khayet, A framework for better understanding membrane distillation separation process, J. Membr. Sci. 285 (2006) 4-29.
    [44]M.E. Findley, Vaporization through porous membranes, Industrial & engineering chemistry process design and development, 6 (1967) 226-230.
    [45]H. Udriot, A. Araque and U. Vonstockar, Azeotropic mixtures may be broken by membrane distillation, Chemical Engineering Journal and the Biochemical Engineering Journal, 54 (1994) 87-93.
    [46]M. Tomaszewska, M. Gryta and A.W. Morawski, Study on the concentration of acids by membrane distillation, J. Membr. Sci. 102 (1995) 113-122.
    [47]F.A. Banat, F. Abu Al-Rub, R. Jumah and M. Shannag, Theoretical investigation of membrane distillation role in breaking the formic acid-water azeotropic point: Comparison between Fickian and Stefan-Maxwell-based models, International Communications in Heat and Mass Transfer, 26 (1999) 879-888.
    [48]F.A. Banat, F. Abu Al-Rub, R. Jumah and M. Shannag, On the effect of inert gases in breaking the formic acid-water azeotrope by gas-gap membrane distillation, Chemical Engineering Journal, 73 (1999) 37-42.
    [49]M. Tomaszewska, M. Gryta and A.W. Morawski, Mass transfer of HCl and H2O across the hydrophobic membrane during membrane distillation, J. Membr. Sci. 166 (2000) 149-157.
    [50]M. Tomaszewska, M. Gryta and A.W. Morawski, Recovery of hydrochloric acid from metal pickling solutions by membrane distillation, Separation and Purification Technology, 22-3 (2001) 591-600.
    [51]M. Khayet, A. Velazquez and J.I. Mengual, Direct contact membrane distillation of humic acid solutions, J. Membr. Sci. 240 (2004) 123-128.
    [52]R. Datta, S. Dechapanichkul, J.S. Kim, L.Y. Fang and H. Uehara, A generalized model for transport of gases in porous, non-porous, and leaky membranes. I. Application to single gases, J. Membr. Sci. 75 (1992) 245-263.
    [53]R.W. Schofield, A.G. Fane and C.J.D. Fell, Gas and vapour transport through microporous membrane. I. Knudsen-poiseuille transition, J. Membr. Sci. 53 (1990) 159-171.
    [54]C.O. Popiel and J. Wojtkowiak, Simple formulas for thermophysical properties of liquid water for heat transfer calculations (from 0℃ to 150℃), Heat Transfer Engineering, 19 (1998) 87-101.
    [55]G.M. Barrow, Physical Chemistry, 2nd edn., McGraw-Hill, New York, N.Y., 1966.
    [56]R.B. Bird, W.E. Stewart and E.N. Lightfoot, Transport Phenomena, Wiley, New York, 2002, 2nd edn.
    [57]J. Phattaranawik, R. Jiraratananon and A.G. Fane, Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation, J. Membr. Sci. 215 (2003) 75-85.
    [58] R.A. Albert and R.J. Silbey, Physical Chemistry, 3nd ed., Wiley, New York, 2001.
    [59]B. E. Poling, J. M. Prausnitz and J. P. O’connell, The Properties of Gases and liquids, McGraw-Hill, New York, 2001, 5nd edn.
    [60]R.W. Schofield, A.G. Fane and C.J.D. Fell, Gas and vapour transport through microporous membrane. II. Membrane distillation, J. Membr. Sci. 53 (1990) 173-185.
    [61]M. Tomaszewska, M. Gryta and A.W. Morawski, A study of separation by the direct contact membrane distillation process, Sep. Technol. 4 (1994) 244-248.
    [62]Z. Ding, R. Ma and A.G. Fane, A new model for mass transfer in direct contact membrane distillation, Desalination. 151 (2002) 217-227.
    [63]R. Krishna, A simplified procedure for the solution of the dusty gas model equations for steady-state transport in nonreacting systems, Chem. Eng. J. 35 (1987) 75-81.
    [64]E.N. Fuller, K. Ensley and J.C. Giddings, A New Method for Prediction of Binary Gas-Phase Diffusion Coefficients, Ind. Eng. Chem., 58 (1966) 19–27.
    [65]E.N. Fuller, P.D. Schettler and J.C. Giddings, Diffusion of Halogenated Hydrocarbons in Helium. The Effect of Structure on Collision Cross sections, J. Phys. Chem., 73 (1969) 3679–3685.
    [66]R. Jackon, in S.W. Churchill (Ed.), Transport in Porous Catalysts, Elsevier, New York, 1977.
    [67]J. Phattaranawik and R. Jiraratananon, Direct contact membrane distillation: effect of mass transfer on heat transfer, J. Membr. Sci. 188 (2001) 137-143.
    [68]J. Phattaranawik, R. Jiraratananon and A.G. Fane, Heat transport and membrane distillation coefficients in direct contact membrane distillation, J. Membr. Sci. 212 (2003) 177-193.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE