簡易檢索 / 詳目顯示

研究生: 華孫震
Hua, Sun-Chen
論文名稱: 全嵌段共軛共聚物高分子與高阻氣性高分子之發展
Development of All-Conjugated Block Copolymers and High Gas Resistance Polymer
指導教授: 堀江正樹
Horie, Masaki
口試委員: 蘇安仲
Su, An-Chung
游進陽
Yu, Chin-Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 94
中文關鍵詞: 全嵌段共軛高分子高阻氣性
外文關鍵詞: All-Conjugated Block Copolymers, High Gas Resistance, gas barrier
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇研究主要分為兩個項目,一是全嵌段共軛共聚物高分子之合成與特性,二是開發具有高阻氣性之工程塑膠PBT。

    在共軛共聚物高分子之題目中,利用鈴木偶聯反應(Suzuki coupling)將兩種共軛高分子:P3HT (poly(3-hexylthiophene) 及PTB7-Th (poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2- ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)]) 合成一全嵌段共軛高分子 P3HT-b-PTB7-Th。在反應中利用兩種比例(P3HT:PTB7-Th):1:2及1:10。利用高效液相色谱法(HPLC)將全嵌段共軛共聚物高分子分離成低分散細數(PDI)的大分子量高分子及小分子量高分子( BCP10-1、BCP10-2及BCP2-1)。再利用膠體滲透層析儀(GPC)分析得 BCP10-1 ( Mn = 53600, PDI = 1.71), BCP10-2 (Mn = 28200, PDI = 1.56), 及 BCP2-1 (Mn = 25800, PDI = 1.59)。將此分離出的高分子利用核磁共振氫譜 (1H NMR)、紫外線/可見光分光光譜 (UV-vis)、熱重分析 (TGA)及差示掃描量熱法 (DSC) 來檢視其結構、光學及熱學性質。

    在開發高阻氣性之工程塑膠PBT之研究中,利用添加高阻氣性之高分子乙烯-乙烯醇共聚物(EVOH)進高阻水性高分子聚對苯二甲酸丁二酯(PBT),但因兩者極性差距大,需添加相溶劑已幫助混合,選定相溶劑後,送致工研院製備薄膜(12 cm x 12 cm x 0.3 mm),並且利用熱重分析 (TGA)及差示掃描量熱法 (DSC)來分析其熱穩定性,加入相溶劑之高分子比起純PBT,熱裂解溫度下降,並且利用光學顯微鏡觀察其型態,加入添加劑後,表面變得較粗糙,在透氧度測是中,添加劑效果最好的是Surlyn,經由適當的比例調配,此配方提升了超過50%的阻氣性。


    This thesis presents two polymer related projects: (1) synthesis and characterization of all-conjugated block copolymers for fundamental research, and (2) development of high gas resistance polybutylene terephthalate (PBT) for industrial research.

    In development of all-conjugated block copolymers, we present the synthesis, purification, and characterization of all-conjugated block copolymers comprising poly(3-hexylthiophene) (P3HT) and poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)] (PTB7-Th). A narrow-distributed, monobrominated P3HT (Mn = 7000, Mw/Mn = 1.31) is synthesized by Grignard metathesis polymerization. This is further reacted with distannyl and dibromo monomers of PTB7-Th by Stille step-growth polycondensation to provide the block copolymers of P3HT-b-PTB7-Th. In these reactions, block ratios are adjusted to 1 to 2 and 1 to 10 based on the numbers of the repeating units of the monomers (i.e. 3-hexylthiophene unit : two monomers of PTB7-Th = 1:2 and 1:10). A preparative gel permeation chromatography (GPC) is used to obtain low polydisperse polymer fractions using chloroform as eluent, leading to the block copolymers P3HT-b-PTB7-Th (namely, BCP10-1, BCP10-2, and BCP2-1) with various molecular weights. These fractions are analyzed by analytical GPC, yielding BCP10-1 with Mn = 53600 (Mw/Mn = 1.71), BCP10-2 with Mn = 28200 (Mw/Mn = 1.56), and BCP2-1 with Mn = 25800 (Mw/Mn = 1.59). In addition, these polymers are analyzed by 1H NMR and UV-vis absorption spectroscopies, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) to investigate their structural, optical, and thermal properties. 

    In development of high gas resistance polymer, we attempt to improv gas barrier ability of PBT for use as food packaging material. We try to blend high moisture barrier material of PBT and high gas barrier material of ethylene vinyl alcohol (EVOH). To improve compatibility and morphology of the polymer blends, various compatibilizers, AX8900, A560, PTW, organoclay, and Surlyn, are used to prevent phase separation. Thin films of the polymer blends (size: 12 cm x 12 cm x 0.3 mm) are prepared using hot press molding machine. Thermal statbility of these films is investigated by thermogravimetric analysis. The blend films composed of the compatibilizers maintain relatively high stability with five weight percent loss temperature above 350 °C, which is slightly lower than original PBT (371.6 °C) due to addition of thermally less stable EVOH and compatibilizers. In addition, morphology of the films are observed using a scanning electron microscope and an optical microscope. The blend film shows very rough surface, where as pure PBT film shows smooth surface. Finally, oxygen permeation test of the thin films is conducted using the oxygen gas transmission apparatus. Original PBT shows gass transimission rate of 6.4 mL m-2 day-1, which is significantly improved to be 2.8 mL m-2 day-1 for the film composition of EVOH 5% and Surlyn 3%.

    Abstract I Chapter 1 Introduction and purpose 1 1.1 Introduction to conjugated polymers 1 1.1.1 Background 1 1.1.2 Synthesis of conjugated polymers 3 1.2 Introduction to organic photovoltaics (OPVs) 5 1.2.1 Background 5 1.2.2 Bulk heterojunction solar cell 7 1.2.3 Working principle of OPVs 10 1.2.4 Molecular engineering of polymers in active layer 14 1.2.5 Poly(3-hexylthiophene) 17 1.2.6 Benzodithiophene based copolymers 19 1.3 Conjugated block copolymers 22 1.4 Introduction to polybutylene terephthalate (PBT) 24 1.5 Introduction to ethylene vinyl alcohol (EVOH) 26 1.6 Introduction to compatibilizer 27 1.7 Aim of the work 30 1.7.1 Development of all-conjugated block copolymers 30 1.7.2 Development of high gas resistance polymer 31 Chapter 2 Synthesis and characterization of all-conjugated block copolymers 32 2.1 Introduction 32 2.2 Synthesis of poly(3-hexylthiophene) 32 2.3 Synthesis of benzodithiophene based copolymers 36 2.4 Synthesis of block copolymers 39 2.5 Properties of polymers 43 2.5.1 Optical properties 43 2.5.2 MALDI TOF mass spectra 45 2.5.2 Thermal properties 50 Chapter 3 Measurement of oxygen transmission rate of polybutylene terephthalate (PBT) 53 3.1 General procedures 53 3.1.1 Materials 53 3.1.2 Characterization 54 3.2 Organoclay as compatibilizer 55 3.3 Block copolymers as compatibilizer 57 3.4 Thermal properities 58 3.5 Morphology 60 3.6 Oxygen transmission test 61 3.7 Optimization by design of experiment techniques 62 Chapter 4 Conclusion and future works 68 4.1 Development of all-conjugated block copolymers 68 4.2 Development of high gas resistance polymer 69 Chapter 5 Experimental section 70 5.1 General methods 70 5.2 Synthesis of monomers 71 5.2.1 Synthesis of 2,5-dibromo-3-hexylthiophene 71 5.2.1.1 Synthesis of 3-hexylthiophene (1) 71 5.2.1.2 Synthesis of 2,5-dibromo-3-hexylthiophene (2) 73 5.2.2 Synthesis of 2,6-bis (trimethyltin)-4,8-bis(5-(2-ethylhexyl)-thiophen -2-yl)benzo[1,2-b:4,5-b']dithiophene 75 5.2.2.1 Synthesis of N,N-diethylthiophene-3-carboxamide (3) 75 5.2.2.2 Synthesis of (2-ethylhexyl)thiophene (4) 77 5.2.2.3 Synthesis of 4,8-dihydrobenzo[1,2-b:4,5-b′]dithiophen-4,8-dione (5) 79 5.2.2.5 Synthesis of (4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(trimethylstannane) (7) 83 5.3 Synthesis of polymers 85 5.3.1 Synthesis of poly(3-hexylthiophene) (P3HT) 85 5.3.2 Synthesis of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4- b]thiophene-)-2-carboxylate-2-6-diyl)] (PTB7-Th) 87 5.3.3 Synthesis of P3HT-b-PTB7-Th 89 References 91

    (1) Heeger, A. J., Rev. Mod. Phys., 2001, 73, 681-700.
    (2) Graham, K. R.; Cabanetos, C.; Jahnke, J. P., et al., J. Am. Chem. Soc., 2014, 136, 9608-18.
    (3) Amatore, C.; Jutand, A.; Le Duc, G., Chem. Eur. J., 2011, 17, 2492-503.
    (4) Miyaura, N.; Yanagi, T.; Suzuki, A., Synth. Commun., 2006, 11, 513-519.
    (5) Cordovilla, C.; Bartolomé, C.; Martínez-Ilarduya, J. M., et al., ACS Catal., 2015, 5, 3040-3053.
    (6) Casado, A. L.; Espinet, P.; Gallego, A. M., J. Am. Chem. Soc., 2000, 122, 11771-11782.
    (7) Gunes, S.; Neugebauer, H.; Sariciftci, N. S., Chem. Rev., 2007, 107, 1324-38.
    (8) Zhou, H. X.; Yang, L. Q.; You, W., Macromolecules, 2012, 45, 607-632.
    (9) Wang, H. J.; Chen, C. P.; Jeng, R. J., Materials, 2014, 7, 2411-2439.
    (10) Hains, A. W.; Liang, Z.; Woodhouse, M. A., et al., Chem. Rev., 2010, 110, 6689-735.
    (11) Steim, R.; Kogler, F. R.; Brabec, C. J., J. Mater. Chem., 2010, 20, 2499.
    (12) Potscavage, W. J., Jr.; Sharma, A.; Kippelen, B., Acc. Chem. Res., 2009, 42, 1758-67.
    (13) Cheng, Y. J.; Yang, S. H.; Hsu, C. S., Chem. Rev., 2009, 109, 5868-923.
    (14) Heeger, A. J., Adv. Mater., 2014, 26, 10-27.
    (15) Yassar, A.; Miozzo, L.; Gironda, R., et al., Prog. Polym. Sci., 2013, 38, 791-844.
    (16) Roncali, J., Acc. Chem. Res., 2009, 42, 1719-30.
    (17) Kularatne, R. S.; Magurudeniya, H. D.; Sista, P., et al., J. Polym. Sci., Part A: Polym. Chem., 2013, 51, 743-768.
    (18) Holliday, S.; Ashraf, R. S.; Wadsworth, A., et al., Nat. Commun., 2016, 7, 11585.
    (19) Stefan, M. C.; Bhatt, M. P.; Sista, P., et al., Polym. Chem., 2012, 3, 1693-1701.
    (20) Kao, K. Y.; Pei, R. Y.; Chen, H. L., et al., RSC Adv., 2016, 6, 79209-79214.
    (21) McCullough, R. D.; Lowe, R. D., J. Chem. Soc., Chem. Commun., 1992, 1, 70.
    (22) Chen, T. A.; Rieke, R. D., J. Am. Chem. Soc., 1992, 114, 10087-10088.
    (23) Loewe, R. S.; Khersonsky, S. M.; McCullough, R. D., Adv. Mater., 1999, 11, 250-253.
    (24) Osaka, I.; McCullough, R. D., Acc. Chem. Res., 2008, 41, 1202-14.
    (25) Jeffries-El, M.; Sauvé, G.; McCullough, R. D., Macromolecules, 2005, 38, 10346-10352.
    (26) Kuo, C.-Y.; Nie, W.; Tsai, H., et al., Macromolecules, 2014, 47, 1008-1020.
    (27) Yuan, J.; Zhai, Z.; Dong, H., et al., Adv. Funct. Mater., 2013, 23, 885-892.
    (28) Sommer, M.; Komber, H.; Huettner, S., et al., Macromolecules, 2012, 45, 4142-4151.
    (29) Wang, S.; Yang, Q.; Tao, Y., et al., New J. Chem., 2016, 40, 1825-1833.
    (30) He, M.; Qiu, F.; Lin, Z., J. Mater. Chem., 2011, 21, 17039.
    (31) Smith, K. A.; Lin, Y.-H.; Dement, D. B., et al., Macromolecules, 2013, 46, 2636-2645.
    (32) Lee, Y.; Gomez, E. D., Macromolecules, 2015, 48, 7385-7395.
    (33) Guo, C.; Lin, Y. H.; Witman, M. D., et al., Nano Lett., 2013, 13, 2957-63.
    (34) Chen, J.; Yu, X.; Hong, K., et al., J. Mater. Chem., 2012, 22, 13013.
    (35) Ludwig, H. J.; Eyerer, P., Polym. Eng. Sci., 1988, 28, 143-146.
    (36) Yokouchi, M.; Sakakibara, Y.; Chatani, Y., et al., Macromolecules, 1976, 9, 266-273.
    (37) Sun, Y.-J.; Hu, G.-H.; Lambla, M., et al., Polymer, 1996, 37, 4119-4127.
    (38) Cheng, S. Z.; Pan, R.; Wunderlich, B., Macromol. Chem. Phys., 1988, 189, 2443-2458.
    (39) Passalacqua, V.; Pilati, F.; Zamboni, V., et al., Polymer, 1976, 17, 1044-1048.
    (40) Griffiths, R. R.; Bigelow, G. E.; Liebson, I. A., J. Exp. Anal. Behav., 1989, 52, 127-140.
    (41) Samios, C.; Kalfoglou, N., Polymer, 2001, 42, 3687-3696.
    (42) Yeo, J. H.; Lee, C. H.; Park, C. S., et al., Adv. Polym. Technol., 2001, 20, 191-201.
    (43) Zhang, Z.; Britt, I. J.; Tung, M. A., J. Polym. Sci., Part B: Polym. Phys., 1999, 37, 691-699.
    (44) Work, W. J.; Horie, K.; Hess, M., et al., Pure Appl Chem, 2004, 76, 1985-2007.
    (45) Scaffaro, R.; Botta, L.; Mistretta, M. C., et al., eXPRESS Polym. Lett., 2013, 7, 873-884.
    (46) Kim, D.; Kwon, H.; Seo, J., Polym. Compos., 2014, 35, 644-654.
    (47) Dole, P.; Joly, C.; Espuche, E., et al., Carbohydr. Polym., 2004, 58, 335-343.
    (48) Huang, C.-H.; Wu, J.-S.; Huang, C.-C., et al., J. Polym. Res., 2004, 11, 75-83.
    (49) Huang, C.-C.; Chang, F.-C., Polymer, 1997, 38, 2135-2141.
    (50) Israels, R.; Jasnow, D.; Balazs, A. C., et al., J Chem Phys, 1995, 102, 8149-8157.
    (51) Artzi, N.; Nir, Y.; Narkis, M., et al., Polym. Compos., 2003, 24, 627-639.
    (52) Mizukado, J.; Sato, H.; Chen, L., et al., J. Mass Spectrom., 2015, 50, 1006-1012.
    (53) Heinrich, C. D.; Thelakkat, M., J. Mater. Chem. C, 2016, 4, 5370-5378.
    (54) Petersen, K.; Nielsen, P. V.; Olsen, M. B., Starch‐Stärke, 2001, 53, 356-361.
    (55) Abou-El-Sherbini, K. S.; Hassanien, M. M., J Hazard Mater, 2010, 184, 654-61.
    (56) Chang, J. H.; An, Y. U., J. Polym. Sci., Part B: Polym. Phys., 2002, 40, 670-677.
    (57) Dennis, H.; Hunter, D.; Chang, D., et al., Polymer, 2001, 42, 9513-9522.
    (58) Tan, B.; Thomas, N. L., J. Membr. Sci., 2016, 514, 595-612.
    (59) Chang, J. H.; An, Y. U.; Sur, G. S., J. Polym. Sci., Part B: Polym. Phys., 2003, 41, 94-103.
    (60) Anastasiadis, S. H.; Gancarz, I.; Koberstein, J. T., Macromolecules, 1989, 22, 1449-1453.
    (61) Samios, C. K.; Kalfoglou, N. K., Polymer, 1998, 39, 3863-3870.
    (62) Foerch, R.; Hunter, D., J. Polym. Sci., Part A: Polym. Chem., 1992, 30, 279-286.
    (63) Siuzdak, D. A.; Start, P. R.; Mauritz, K. A., J. Appl. Polym. Sci., 2000, 77, 2832-2844.
    (64) Yang, J.; Bai, L.; Feng, G., et al., Ind. Eng. Chem. Res., 2013, 52, 16745-16754.
    (65) Artzi, N.; Nir, Y.; Narkis, M., et al., J. Polym. Sci., Part B: Polym. Phys., 2002, 40, 1741-1753.

    QR CODE