簡易檢索 / 詳目顯示

研究生: 陳家庠
Chia-Hsiang Chen
論文名稱: 氧化鎂穿隧式磁阻的製備及研究
Fabrication and investigation of MgO-based magnetic tunneling junction
指導教授: 賴志煌
Chih-Huang Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 90
中文關鍵詞: 氧化鎂穿隧磁阻
外文關鍵詞: MgO, CoFeB, tunneling junction
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討以氧化鎂作為穿隧阻絕層,搭配兩層CoFeB鐵磁層的磁阻結構,將探討穿隧磁阻結構的磁性質,進一步研究氧化鎂結構的特性及其退火效應,同時建立磁阻結構微小化的製程平台。

    在磁性質方面,製備出準自旋閥結構跟自旋閥結構的穿隧磁阻結構,並討論退火效應對於磁性質的影響。在初鍍膜及退火處後的試片皆可觀察到明顯的平行態及反平行態的磁矩翻轉行為。我們也探討氧化鎂厚度對於兩鐵磁層的交互作用力關係,在下固定層結構中可以看到隨厚度遞減伴隨些微震盪的曲線,而上固定層結構則為單調遞減的趨勢。

    氧化鎂的結構方面,藉由調變鍍膜功率及工作氣壓觀察其結構的性質,同時也發現不同材料的緩衝層對氧化鎂結構的影響,並測試不同退火方式對於氧化鎂結構的影響。目前已經能夠製備出MgO(111)方向結晶的結構,而在MgO/CoFeB多層薄膜的結構中也發現CoFeB的鍍膜條件會影響到MgO的結構。

    在微小化製程方面,利用光學微影搭配蝕刻的方式,製備出微小化的磁阻元件,在氧化鎂的穿隧磁阻結構中已量測到非線性的I-V曲線,但尚未量測到磁阻變化的圖形。



    MgO-based magnetic tunneling junctions (MTJs) with CoFeB ferromagnetic layers were fabricated in this study. The structural, magnetic and electrotransport properties of both as-deposited and annealed samples were well discussed. The pattern process was also set up to fabricate small size MTJs, which can avoid the geometric effect and improve the reliability of measured MR ratio, especially for low RA samples.
    Both pseudo spin-valve and spin-valve type samples were prepared. The magnetic properties of these samples were well examined. The parallel and antiparallel states can also be well distinguished. We also investigated the dependence of MgO thickness on interlayer coupling between free layer and pinned layer. In the top pinned spin-valve structure, we observed a monotonic decay with increasing MgO thickness. However, some oscillation of interlayer coupling strength with the MgO thickness was observed in the bottom pinned structure.
    The structural properties of MgO prepared with various sputtering powers and working pressures during deposition process were studied by using the XRD measurement. We found that different buffer layer can induce different MgO structure. The crystalline MgO with (111) preferred orientation was successfully fabricated in this study.
    Photolithography and dry etching were both used in our pattern process, which worked well for our previous AlOx-based MTJs. But there were some problems in the MgO-based MTJs. Only nonlinear I-V curve can be observed, which means the existence of the tunneling effect.

    目 錄 第一章 前言…………………………………………………………1 第二章 文獻回顧……………………………………………………3 2.1 穿隧磁阻現象…………………………………………………3 2.1.1 自旋相關穿隧效應……………………………………………3 2.1.2 穿隧磁阻效應…………………………………………………5 2.1.3 穿隧磁阻模型…………………………………………………7 2.2 穿隧磁阻之發展………………………………………………12 2.3 穿隧磁阻相關實驗……………………………………………17 2.3.1 穿隧磁阻層響應………………………………………………17 2.3.2 鐵磁層響應……………………………………………………18 2.3.3 退火效應………………………………………………………21 2.3.4 電壓響應………………………………………………………22 2.3.5 溫度響應………………………………………………………24 2.3.6 幾何效應………………………………………………………25 2.3.7 自旋傳輸效應…………………………………………………26 2.4 穿隧磁阻的應用………………………………………………28 2.4.1 磁碟讀頭………………………………………………………28 2.4.2 磁性記憶體……………………………………………………29 第三章 實驗方法與分析儀器………………………………………31 3.1 實驗流程………………………………………………………31 3.2 樣品製備………………………………………………………31 3.2.1 薄膜沈積製程系統……………………………………………31 3.2.2 微影製程設備系統……………………………………………33 3.2.3 蝕刻系統………………………………………………………35 3.3 量測分析儀器…………………………………………………36 3.3.1 震盪樣品磁測儀 (VSM)………………………………………36 3.3.2 磁光柯爾效應分析儀 (MOKE) ………………………………37 3.3.3 X光繞射儀(X-ray diffractometer,XRD)…………………40 3.3.4 原子力顯微鏡 (AFM)…………………………………………41 3.3.5 電子顯微鏡系統 (TEM)………………………………………43 3.3.6 四點探針量測 (4-point probe measurement)……………45 第四章 實驗結果與討論……………………………………………46 4.1 磁性薄膜的製備………………………………………………46 4.1.1 準自旋閥結構的建立…………………………………………46 4.1.2 自旋閥結構的建立……………………………………………50 4.2 氧化鎂結構探討………………………………………………65 4.2.1 不同緩衝層的氧化鎂結構……………………………………66 4.2.2 不同氧化鎂製備條件的CoFeB/MgO 多層膜研究……………69 4.3 微小化製程技術………………………………………………72 4.3.1 微小化的元件製備……………………………………………73 4.3.2 結構及性質分析………………………………………………78 第五章 結論…………………………………………………………86 參考文獻………………………………………………………………88

    參考文獻

    1. W. H. Butler., et al., Phys. Rev. B 63 054416 (2001).

    2. J. Mathon., et al., Phys. Rev. B 63 220403 (2001).

    3. S. Yuasa.,et al.,Nat. Mater. 3 868 (2004).

    4. S. S. P. Parkin.,et al.,Nat. Mater. 3 862 (2004).

    5. W. Wulfhekel.,et al.,Appl. Phys. Lett. 78 509 (2001).

    6. M. Bowen.,et al.,Appl. Phys. Lett. 79 1655 (2001).

    7. J. Faure-Vincent.,et al.,Appl. Phys. Lett. 82 4507 (2003).

    8. S. Mitani., et al., J. Appl. Phys. 93 8041 (2003).

    9. S. Yuasa.,et al.,Appl. Phys. Lett. 86 092502 (2005).

    10. J. Hayakawa., et al., Jpn. J. Appl. Phys. 44 No.19 L587 (2005).

    11. S. Ikeda., et al., Jpn. J. Appl. Phys. 44 No. 48 L1442 (2005).

    12. Y. M. Lee., Appl. Phys. Lett. 89 042506 (2006).

    13. S. Yuasa.,et al., Appl. Phys. Lett. 89 042505 (2006).

    14. X. G. Zhang., et al., Phys. Rev. B 70 172407 (2004).

    15. J. Hayakawa.,et al., Appl. Phys. Lett. 89 232510 (2006).

    16. W. H. Butler., et al., Phys. Rev. B 63 054416 (2001).

    17. X. G. Zhang., et al., Phys. Rev. B 70 172407 (2004).

    18. J. C. Slonczewski., Phys. Rev. B 39 6995 (1989).

    19. D. Wang., et al., IEEE Trans. Magn. 40 2269 (2004).

    20. S. Cardoso., et al., J. Appl. Phys. 97 10C916 (2005).

    21. P. V. Paluskar., et al., J. Appl. Phys. 99 08E503 (2006).

    22. Yung-Hung Wang., et al., J. Appl. Phys. 99 08M307 (2006).

    23. Ezana Negusse., et al., Appl. Phys. Lett. 90 092502 (2007).

    24. Jose Maria De., et al., Science 286 507 (1999).

    25. M. Sata.,et al., IEEE Trans. Magn. 33 3553 (1997).

    26. R. C. Sousa., et al., J. Appl. Phys. 85 5258 (1999).

    27. K. Tsunekawa., et al., Jpn. J. Appl. Phys. 45 No.43 L1152 (2006).

    28. Weifeng Shen., et al., Appl. Phys. Lett. 88 182508 (2006).

    29. Zhitao Diao., et al., Appl. Phys. Lett. 87 232502 (2005).

    30. Chando Park., et al., J. Appl. Phys. 99 08A901 (2006).

    31. Gen Feng., et al., Appl. Phys. Lett. 89 162501 (2006).

    32. Chang He Shang., et al., Phys. Rev. B 58 R2917 (1998).

    33. P. LeClair., et at., J. Appl. Phys. 76 6546 (1994).

    34. A. H. MacDonald., et at., Phys. Rev. Lett. 81 705 (1998).

    35. A. Vedyayev., et al., Phys. Rev. B 63 064429 (2001).

    36. X. Kou., et al., Appl. Phys. Lett. 88 212115 (2006).

    37. J. S. Moodera., et al., Appl. Phys. Lett. 69 708 (1996).

    38. R. J. Van de Veerdonk., et al., Appl. Phys. Lett. 71 2839 (1997).

    39. J. C. Slonczewski.,J. Magn. Magn. Mater. 159 L1 (1996).

    40. L. Berger., Phys. Rev. B 54 9353 (1996).

    41. J. A. Katine., et at., Phys. Rev. Lett. 84 3149 (2000).

    42. F. J. Albert., et al., Appl. Phys. Lett. 77 3809 (2000).

    43. P. M. Tedrow., et al., Phys. Rev. Lett. 25 1270 (1970).

    44. R. Meservey., et al., Phys. Rev. Lett. 26 192 (1970).

    45. M. Julliere, Phys. Lett. A 54, 225 (1975).

    46. T. Miyazaki., et al., J. Magn. Magn. Mater. 98, L7 (1991).

    47. J. S. Moodera., et al., Phys. Rev. Lett. 74, 3273 (1995).

    48. Jagadeesh S., et al., Appl. Phys. Lett. 70 3050 (1997).

    49. J. J. Sun.,et al., Appl. Phys. Lett. 74 448 (1999).

    50. U. May., et al., Appl. Phys. Lett. 78 2026 (2001).

    51. T. Hagler., et al., J. Appl. Phys. 89 7570 (2001).

    52. S. S. P. Parkin.,et al.,Europhys. Lett. 55 439 (2001).

    53. J. D. R. Buchanan., Appl. Phys. Lett. 81 751 (2002).

    54. T.Katayama., et al., Appl. Phys. Lett. 89 112503 (2006).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE